Keywords: reflexive ring; reversible ring; $J$-reflexive ring; $J$-reversible ring; ring extension
@article{10_21136_MB_2023_0034_22,
author = {\c{C}alc{\i}, Mete Burak and Chen, Huanyin and Hal{\i}c{\i}o\u{g}lu, Sait},
title = {A generalization of reflexive rings},
journal = {Mathematica Bohemica},
pages = {225--235},
year = {2024},
volume = {149},
number = {2},
doi = {10.21136/MB.2023.0034-22},
mrnumber = {4767009},
zbl = {07893420},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0034-22/}
}
TY - JOUR AU - Çalcı, Mete Burak AU - Chen, Huanyin AU - Halıcıoğlu, Sait TI - A generalization of reflexive rings JO - Mathematica Bohemica PY - 2024 SP - 225 EP - 235 VL - 149 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0034-22/ DO - 10.21136/MB.2023.0034-22 LA - en ID - 10_21136_MB_2023_0034_22 ER -
Çalcı, Mete Burak; Chen, Huanyin; Halıcıoğlu, Sait. A generalization of reflexive rings. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 225-235. doi: 10.21136/MB.2023.0034-22
[1] Calci, M. B., Chen, H., Halicioglu, S., Harmanci, A.: Reversibility of rings with respect to the Jacobson radical. Mediterr. J. Math. 14 (2017), Article ID 137, 14 pages. | DOI | MR | JFM
[2] Cohn, P. M.: Reversible rings. Bull. Lond. Math. Soc. 31 (1999), 641-648. | DOI | MR | JFM
[3] Kaplansky, I.: Rings of Operators. Mathematics Lecture Note Series. W. A. Benjamin, New York (1968). | MR | JFM
[4] Kwak, T. K., Lee, Y.: Reflexive property of rings. Commun. Algebra 40 (2012), 1576-1594. | DOI | MR | JFM
[5] Lam, T. Y., Dugas, A. S.: Quasi-duo rings and stable range descent. J. Pure. Appl. Algebra 195 (2005), 243-259. | DOI | MR | JFM
[6] Mason, G.: Reflexive ideals. Commun. Algebra 9 (1981), 1709-1724. | DOI | MR | JFM
[7] Nicholson, W. K., Zhou, Y.: Rings in which elements are uniquely the sum of an idempotent and a unit. Glasg. Math. J. 46 (2004), 227-236. | DOI | MR | JFM
[8] Yu, H.-P.: On quasi-duo rings. Glasg. Math. J. 37 (1995), 21-31. | DOI | MR | JFM
Cité par Sources :