A generalization of reflexive rings
Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 225-235 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce a class of rings which is a generalization of reflexive rings and $J$-reversible rings. Let $R$ be a ring with identity and $J(R)$ denote the Jacobson radical of $R$. A ring $R$ is called $J$-reflexive if for any $a, b \in R$, $aRb = 0$ implies $bRa \subseteq J(R)$. We give some characterizations of a $J$-reflexive ring. We prove that some results of reflexive rings can be extended to $J$-reflexive rings for this general setting. We conclude some relations between $J$-reflexive rings and some related rings. We investigate some extensions of a ring which satisfies the $J$-reflexive property and we show that the $J$-reflexive property is Morita invariant.
We introduce a class of rings which is a generalization of reflexive rings and $J$-reversible rings. Let $R$ be a ring with identity and $J(R)$ denote the Jacobson radical of $R$. A ring $R$ is called $J$-reflexive if for any $a, b \in R$, $aRb = 0$ implies $bRa \subseteq J(R)$. We give some characterizations of a $J$-reflexive ring. We prove that some results of reflexive rings can be extended to $J$-reflexive rings for this general setting. We conclude some relations between $J$-reflexive rings and some related rings. We investigate some extensions of a ring which satisfies the $J$-reflexive property and we show that the $J$-reflexive property is Morita invariant.
DOI : 10.21136/MB.2023.0034-22
Classification : 13C99, 16D80, 16U80
Keywords: reflexive ring; reversible ring; $J$-reflexive ring; $J$-reversible ring; ring extension
@article{10_21136_MB_2023_0034_22,
     author = {\c{C}alc{\i}, Mete Burak and Chen, Huanyin and Hal{\i}c{\i}o\u{g}lu, Sait},
     title = {A generalization of reflexive rings},
     journal = {Mathematica Bohemica},
     pages = {225--235},
     year = {2024},
     volume = {149},
     number = {2},
     doi = {10.21136/MB.2023.0034-22},
     mrnumber = {4767009},
     zbl = {07893420},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0034-22/}
}
TY  - JOUR
AU  - Çalcı, Mete Burak
AU  - Chen, Huanyin
AU  - Halıcıoğlu, Sait
TI  - A generalization of reflexive rings
JO  - Mathematica Bohemica
PY  - 2024
SP  - 225
EP  - 235
VL  - 149
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0034-22/
DO  - 10.21136/MB.2023.0034-22
LA  - en
ID  - 10_21136_MB_2023_0034_22
ER  - 
%0 Journal Article
%A Çalcı, Mete Burak
%A Chen, Huanyin
%A Halıcıoğlu, Sait
%T A generalization of reflexive rings
%J Mathematica Bohemica
%D 2024
%P 225-235
%V 149
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0034-22/
%R 10.21136/MB.2023.0034-22
%G en
%F 10_21136_MB_2023_0034_22
Çalcı, Mete Burak; Chen, Huanyin; Halıcıoğlu, Sait. A generalization of reflexive rings. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 225-235. doi: 10.21136/MB.2023.0034-22

Cité par Sources :