A generalization of reflexive rings
Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 225-235
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce a class of rings which is a generalization of reflexive rings and $J$-reversible rings. Let $R$ be a ring with identity and $J(R)$ denote the Jacobson radical of $R$. A ring $R$ is called $J$-reflexive if for any $a, b \in R$, $aRb = 0$ implies $bRa \subseteq J(R)$. We give some characterizations of a $J$-reflexive ring. We prove that some results of reflexive rings can be extended to $J$-reflexive rings for this general setting. We conclude some relations between $J$-reflexive rings and some related rings. We investigate some extensions of a ring which satisfies the $J$-reflexive property and we show that the $J$-reflexive property is Morita invariant.
We introduce a class of rings which is a generalization of reflexive rings and $J$-reversible rings. Let $R$ be a ring with identity and $J(R)$ denote the Jacobson radical of $R$. A ring $R$ is called $J$-reflexive if for any $a, b \in R$, $aRb = 0$ implies $bRa \subseteq J(R)$. We give some characterizations of a $J$-reflexive ring. We prove that some results of reflexive rings can be extended to $J$-reflexive rings for this general setting. We conclude some relations between $J$-reflexive rings and some related rings. We investigate some extensions of a ring which satisfies the $J$-reflexive property and we show that the $J$-reflexive property is Morita invariant.
DOI : 10.21136/MB.2023.0034-22
Classification : 13C99, 16D80, 16U80
Keywords: reflexive ring; reversible ring; $J$-reflexive ring; $J$-reversible ring; ring extension
@article{10_21136_MB_2023_0034_22,
     author = {\c{C}alc{\i}, Mete Burak and Chen, Huanyin and Hal{\i}c{\i}o\u{g}lu, Sait},
     title = {A generalization of reflexive rings},
     journal = {Mathematica Bohemica},
     pages = {225--235},
     year = {2024},
     volume = {149},
     number = {2},
     doi = {10.21136/MB.2023.0034-22},
     mrnumber = {4767009},
     zbl = {07893420},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0034-22/}
}
TY  - JOUR
AU  - Çalcı, Mete Burak
AU  - Chen, Huanyin
AU  - Halıcıoğlu, Sait
TI  - A generalization of reflexive rings
JO  - Mathematica Bohemica
PY  - 2024
SP  - 225
EP  - 235
VL  - 149
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0034-22/
DO  - 10.21136/MB.2023.0034-22
LA  - en
ID  - 10_21136_MB_2023_0034_22
ER  - 
%0 Journal Article
%A Çalcı, Mete Burak
%A Chen, Huanyin
%A Halıcıoğlu, Sait
%T A generalization of reflexive rings
%J Mathematica Bohemica
%D 2024
%P 225-235
%V 149
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0034-22/
%R 10.21136/MB.2023.0034-22
%G en
%F 10_21136_MB_2023_0034_22
Çalcı, Mete Burak; Chen, Huanyin; Halıcıoğlu, Sait. A generalization of reflexive rings. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 225-235. doi: 10.21136/MB.2023.0034-22

[1] Calci, M. B., Chen, H., Halicioglu, S., Harmanci, A.: Reversibility of rings with respect to the Jacobson radical. Mediterr. J. Math. 14 (2017), Article ID 137, 14 pages. | DOI | MR | JFM

[2] Cohn, P. M.: Reversible rings. Bull. Lond. Math. Soc. 31 (1999), 641-648. | DOI | MR | JFM

[3] Kaplansky, I.: Rings of Operators. Mathematics Lecture Note Series. W. A. Benjamin, New York (1968). | MR | JFM

[4] Kwak, T. K., Lee, Y.: Reflexive property of rings. Commun. Algebra 40 (2012), 1576-1594. | DOI | MR | JFM

[5] Lam, T. Y., Dugas, A. S.: Quasi-duo rings and stable range descent. J. Pure. Appl. Algebra 195 (2005), 243-259. | DOI | MR | JFM

[6] Mason, G.: Reflexive ideals. Commun. Algebra 9 (1981), 1709-1724. | DOI | MR | JFM

[7] Nicholson, W. K., Zhou, Y.: Rings in which elements are uniquely the sum of an idempotent and a unit. Glasg. Math. J. 46 (2004), 227-236. | DOI | MR | JFM

[8] Yu, H.-P.: On quasi-duo rings. Glasg. Math. J. 37 (1995), 21-31. | DOI | MR | JFM

Cité par Sources :