A generalization of reflexive rings
Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 225-235
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We introduce a class of rings which is a generalization of reflexive rings and $J$-reversible rings. Let $R$ be a ring with identity and $J(R)$ denote the Jacobson radical of $R$. A ring $R$ is called $J$-reflexive if for any $a, b \in R$, $aRb = 0$ implies $bRa \subseteq J(R)$. We give some characterizations of a $J$-reflexive ring. We prove that some results of reflexive rings can be extended to $J$-reflexive rings for this general setting. We conclude some relations between $J$-reflexive rings and some related rings. We investigate some extensions of a ring which satisfies the $J$-reflexive property and we show that the $J$-reflexive property is Morita invariant.
We introduce a class of rings which is a generalization of reflexive rings and $J$-reversible rings. Let $R$ be a ring with identity and $J(R)$ denote the Jacobson radical of $R$. A ring $R$ is called $J$-reflexive if for any $a, b \in R$, $aRb = 0$ implies $bRa \subseteq J(R)$. We give some characterizations of a $J$-reflexive ring. We prove that some results of reflexive rings can be extended to $J$-reflexive rings for this general setting. We conclude some relations between $J$-reflexive rings and some related rings. We investigate some extensions of a ring which satisfies the $J$-reflexive property and we show that the $J$-reflexive property is Morita invariant.
DOI :
10.21136/MB.2023.0034-22
Classification :
13C99, 16D80, 16U80
Keywords: reflexive ring; reversible ring; $J$-reflexive ring; $J$-reversible ring; ring extension
Keywords: reflexive ring; reversible ring; $J$-reflexive ring; $J$-reversible ring; ring extension
@article{10_21136_MB_2023_0034_22,
author = {\c{C}alc{\i}, Mete Burak and Chen, Huanyin and Hal{\i}c{\i}o\u{g}lu, Sait},
title = {A generalization of reflexive rings},
journal = {Mathematica Bohemica},
pages = {225--235},
year = {2024},
volume = {149},
number = {2},
doi = {10.21136/MB.2023.0034-22},
mrnumber = {4767009},
zbl = {07893420},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0034-22/}
}
TY - JOUR AU - Çalcı, Mete Burak AU - Chen, Huanyin AU - Halıcıoğlu, Sait TI - A generalization of reflexive rings JO - Mathematica Bohemica PY - 2024 SP - 225 EP - 235 VL - 149 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0034-22/ DO - 10.21136/MB.2023.0034-22 LA - en ID - 10_21136_MB_2023_0034_22 ER -
Çalcı, Mete Burak; Chen, Huanyin; Halıcıoğlu, Sait. A generalization of reflexive rings. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 225-235. doi: 10.21136/MB.2023.0034-22
Cité par Sources :