On a theorem of McCoy
Mathematica Bohemica, Tome 149 (2024) no. 1, pp. 27-38.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study McCoy's theorem to the skew Hurwitz series ring $({\rm HR}, \omega )$ for some different classes of rings such as: semiprime rings, APP rings and skew Hurwitz serieswise quasi-Armendariz rings. Moreover, we establish an equivalence relationship between a right zip ring and its skew Hurwitz series ring in case when a ring $R$ satisfies McCoy's theorem of skew Hurwitz series.
DOI : 10.21136/MB.2023.0031-22
Classification : 16S10, 16S85, 16U80
Keywords: skew Hurwitz series ring; $\omega $-compatible ring; skew Hurwitz serieswise; quasi-Armendariz rings; zip ring; APP ring
@article{10_21136_MB_2023_0031_22,
     author = {Sharma, Rajendra Kumar and Singh, Amit B.},
     title = {On a theorem of {McCoy}},
     journal = {Mathematica Bohemica},
     pages = {27--38},
     publisher = {mathdoc},
     volume = {149},
     number = {1},
     year = {2024},
     doi = {10.21136/MB.2023.0031-22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0031-22/}
}
TY  - JOUR
AU  - Sharma, Rajendra Kumar
AU  - Singh, Amit B.
TI  - On a theorem of McCoy
JO  - Mathematica Bohemica
PY  - 2024
SP  - 27
EP  - 38
VL  - 149
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0031-22/
DO  - 10.21136/MB.2023.0031-22
LA  - en
ID  - 10_21136_MB_2023_0031_22
ER  - 
%0 Journal Article
%A Sharma, Rajendra Kumar
%A Singh, Amit B.
%T On a theorem of McCoy
%J Mathematica Bohemica
%D 2024
%P 27-38
%V 149
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0031-22/
%R 10.21136/MB.2023.0031-22
%G en
%F 10_21136_MB_2023_0031_22
Sharma, Rajendra Kumar; Singh, Amit B. On a theorem of McCoy. Mathematica Bohemica, Tome 149 (2024) no. 1, pp. 27-38. doi : 10.21136/MB.2023.0031-22. http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0031-22/

Cité par Sources :