Remark on regularity criterion for weak solutions to the shear thinning fluids
Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 287-294
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

J. Q. Yang (2019) established a regularity criterion for the 3D shear thinning fluids in the whole space $\Bbb {R}^3$ via two velocity components. The goal of this short note is to extend this result in viewpoint of Lorentz space.
J. Q. Yang (2019) established a regularity criterion for the 3D shear thinning fluids in the whole space $\Bbb {R}^3$ via two velocity components. The goal of this short note is to extend this result in viewpoint of Lorentz space.
DOI : 10.21136/MB.2023.0024-23
Classification : 35Q35, 76D05
Keywords: shear thinning fluids; regularity criterion
@article{10_21136_MB_2023_0024_23,
     author = {Kim, Jae-Myoung},
     title = {Remark on regularity criterion for weak solutions to the shear thinning fluids},
     journal = {Mathematica Bohemica},
     pages = {287--294},
     year = {2024},
     volume = {149},
     number = {3},
     doi = {10.21136/MB.2023.0024-23},
     mrnumber = {4801102},
     zbl = {07953703},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0024-23/}
}
TY  - JOUR
AU  - Kim, Jae-Myoung
TI  - Remark on regularity criterion for weak solutions to the shear thinning fluids
JO  - Mathematica Bohemica
PY  - 2024
SP  - 287
EP  - 294
VL  - 149
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0024-23/
DO  - 10.21136/MB.2023.0024-23
LA  - en
ID  - 10_21136_MB_2023_0024_23
ER  - 
%0 Journal Article
%A Kim, Jae-Myoung
%T Remark on regularity criterion for weak solutions to the shear thinning fluids
%J Mathematica Bohemica
%D 2024
%P 287-294
%V 149
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0024-23/
%R 10.21136/MB.2023.0024-23
%G en
%F 10_21136_MB_2023_0024_23
Kim, Jae-Myoung. Remark on regularity criterion for weak solutions to the shear thinning fluids. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 287-294. doi: 10.21136/MB.2023.0024-23

[1] Alghamdi, A. M., Gala, S., Ragusa, M. A., Yang, J. Q.: Regularity criterion via two components of velocity on weak solutions to the shear thinning fluids in $\Bbb R^3$. Comput. Appl. Math. 39 (2020), Article ID 234, 9 pages. | DOI | MR | JFM

[2] Astarita, G., Marrucci, G.: Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, London (1974).

[3] Bae, H.-O., Choe, H. J., Kim, D. W.: Regularity and singularity of weak solutions to Ostwald-de Waele flows. J. Korean Math. Soc. 37 (2000), 957-975. | MR | JFM

[4] Berselli, L. C., Diening, L., Růžička, M.: Existence of strong solutions for incompressible fluids with shear-dependent viscosities. J. Math. Fluid Mech. 12 (2010), 101-132. | DOI | MR | JFM

[5] Böhme, G.: Non-Newtonian Fluid Mechanics. North-Holland Series in Applied Mathematics and Mechanics 31. North-Holland, Amsterdam (1987). | MR | JFM

[6] Bosia, S., Pata, V., Robinson, J. C.: A weak-$L^p$ Prodi-Serrin type regularity criterion for the Navier-Stokes equations. J. Math. Fluid Mech. 16 (2014), 721-725. | DOI | MR | JFM

[7] Diening, L., Růžička, M., Wolf, J.: Existence of weak solutions for unsteady motions of generalized Newtonian fluids. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 (2010), 1-46. | DOI | MR | JFM

[8] Krylov, N. V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. Graduate Studies in Mathematics 96. AMS, Providence (2008). | DOI | MR | JFM

[9] Ladyzhenskaya, O. A.: New equations for the description of the motion of viscous incompressible fluids and solvability in the large of boundary value problems for them. Tr. Mat. Inst. Steklova 102 (1967), 85-104 Russian. | MR | JFM

[10] Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969). | MR | JFM

[11] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Paris (1969), French. | MR | JFM

[12] Loayza, M., Rojas-Medar, M. A.: A weak-$L^p$ Prodi-Serrin type regularity criterion for the micropolar fluid equations. J. Math. Phys. 57 (2016), Article ID 021512, 6 pages. | DOI | MR | JFM

[13] Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and Measure-Valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computation 13. Chapman & Hall, London (1996). | DOI | MR | JFM

[14] Málek, J., Rajagopal, K. R.: Mathematical issues concerning the Navier-Stokes equations and some of its generalizations. Evolutionary Equations. Volume II Handbook of Differential Equations. Elsevier, Amsterdam (2005), 371-459. | DOI | MR | JFM

[15] O'Neil, R.: Convolution operators and $L(p,q)$ spaces. Duke Math. J. 30 (1963), 129-142. | DOI | MR | JFM

[16] Pineau, B., Yu, X.: A new Prodi-Serrin type regularity criterion in velocity directions. J. Math. Fluid Mech. 20 (2018), 1737-1744. | DOI | MR | JFM

[17] Pokorný, M.: Cauchy problem for the non-Newtonian viscous incompressible fluid. Appl. Math., Praha 41 (1996), 169-201. | DOI | MR | JFM

[18] Triebel, H.: Theory of Function Spaces. Monographs in Mathematics 78. Birkhäuser, Basel (1983). | DOI | MR | JFM

[19] Yang, J.: Regularity criteria for 3D shear thinning fluids via two velocity components. Comput. Math. Appl. 77 (2019), 2854-2858. | DOI | MR | JFM

Cité par Sources :