Keywords: shear thinning fluids; regularity criterion
@article{10_21136_MB_2023_0024_23,
author = {Kim, Jae-Myoung},
title = {Remark on regularity criterion for weak solutions to the shear thinning fluids},
journal = {Mathematica Bohemica},
pages = {287--294},
year = {2024},
volume = {149},
number = {3},
doi = {10.21136/MB.2023.0024-23},
mrnumber = {4801102},
zbl = {07953703},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0024-23/}
}
TY - JOUR AU - Kim, Jae-Myoung TI - Remark on regularity criterion for weak solutions to the shear thinning fluids JO - Mathematica Bohemica PY - 2024 SP - 287 EP - 294 VL - 149 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0024-23/ DO - 10.21136/MB.2023.0024-23 LA - en ID - 10_21136_MB_2023_0024_23 ER -
%0 Journal Article %A Kim, Jae-Myoung %T Remark on regularity criterion for weak solutions to the shear thinning fluids %J Mathematica Bohemica %D 2024 %P 287-294 %V 149 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0024-23/ %R 10.21136/MB.2023.0024-23 %G en %F 10_21136_MB_2023_0024_23
Kim, Jae-Myoung. Remark on regularity criterion for weak solutions to the shear thinning fluids. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 287-294. doi: 10.21136/MB.2023.0024-23
[1] Alghamdi, A. M., Gala, S., Ragusa, M. A., Yang, J. Q.: Regularity criterion via two components of velocity on weak solutions to the shear thinning fluids in $\Bbb R^3$. Comput. Appl. Math. 39 (2020), Article ID 234, 9 pages. | DOI | MR | JFM
[2] Astarita, G., Marrucci, G.: Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, London (1974).
[3] Bae, H.-O., Choe, H. J., Kim, D. W.: Regularity and singularity of weak solutions to Ostwald-de Waele flows. J. Korean Math. Soc. 37 (2000), 957-975. | MR | JFM
[4] Berselli, L. C., Diening, L., Růžička, M.: Existence of strong solutions for incompressible fluids with shear-dependent viscosities. J. Math. Fluid Mech. 12 (2010), 101-132. | DOI | MR | JFM
[5] Böhme, G.: Non-Newtonian Fluid Mechanics. North-Holland Series in Applied Mathematics and Mechanics 31. North-Holland, Amsterdam (1987). | MR | JFM
[6] Bosia, S., Pata, V., Robinson, J. C.: A weak-$L^p$ Prodi-Serrin type regularity criterion for the Navier-Stokes equations. J. Math. Fluid Mech. 16 (2014), 721-725. | DOI | MR | JFM
[7] Diening, L., Růžička, M., Wolf, J.: Existence of weak solutions for unsteady motions of generalized Newtonian fluids. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 (2010), 1-46. | DOI | MR | JFM
[8] Krylov, N. V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. Graduate Studies in Mathematics 96. AMS, Providence (2008). | DOI | MR | JFM
[9] Ladyzhenskaya, O. A.: New equations for the description of the motion of viscous incompressible fluids and solvability in the large of boundary value problems for them. Tr. Mat. Inst. Steklova 102 (1967), 85-104 Russian. | MR | JFM
[10] Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969). | MR | JFM
[11] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Paris (1969), French. | MR | JFM
[12] Loayza, M., Rojas-Medar, M. A.: A weak-$L^p$ Prodi-Serrin type regularity criterion for the micropolar fluid equations. J. Math. Phys. 57 (2016), Article ID 021512, 6 pages. | DOI | MR | JFM
[13] Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and Measure-Valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computation 13. Chapman & Hall, London (1996). | DOI | MR | JFM
[14] Málek, J., Rajagopal, K. R.: Mathematical issues concerning the Navier-Stokes equations and some of its generalizations. Evolutionary Equations. Volume II Handbook of Differential Equations. Elsevier, Amsterdam (2005), 371-459. | DOI | MR | JFM
[15] O'Neil, R.: Convolution operators and $L(p,q)$ spaces. Duke Math. J. 30 (1963), 129-142. | DOI | MR | JFM
[16] Pineau, B., Yu, X.: A new Prodi-Serrin type regularity criterion in velocity directions. J. Math. Fluid Mech. 20 (2018), 1737-1744. | DOI | MR | JFM
[17] Pokorný, M.: Cauchy problem for the non-Newtonian viscous incompressible fluid. Appl. Math., Praha 41 (1996), 169-201. | DOI | MR | JFM
[18] Triebel, H.: Theory of Function Spaces. Monographs in Mathematics 78. Birkhäuser, Basel (1983). | DOI | MR | JFM
[19] Yang, J.: Regularity criteria for 3D shear thinning fluids via two velocity components. Comput. Math. Appl. 77 (2019), 2854-2858. | DOI | MR | JFM
Cité par Sources :