Keywords: generalized absolute convergence; Vilenkin-Fourier series; modulus of continuity; multiplicative system
@article{10_21136_MB_2023_0023_22,
author = {Kalsariya, Nayna Govindbhai and Ghodadra, Bhikha Lila},
title = {Generalized absolute convergence of single and double {Vilenkin-Fourier} series and related results},
journal = {Mathematica Bohemica},
pages = {129--166},
year = {2024},
volume = {149},
number = {2},
doi = {10.21136/MB.2023.0023-22},
mrnumber = {4767005},
zbl = {07893416},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0023-22/}
}
TY - JOUR AU - Kalsariya, Nayna Govindbhai AU - Ghodadra, Bhikha Lila TI - Generalized absolute convergence of single and double Vilenkin-Fourier series and related results JO - Mathematica Bohemica PY - 2024 SP - 129 EP - 166 VL - 149 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0023-22/ DO - 10.21136/MB.2023.0023-22 LA - en ID - 10_21136_MB_2023_0023_22 ER -
%0 Journal Article %A Kalsariya, Nayna Govindbhai %A Ghodadra, Bhikha Lila %T Generalized absolute convergence of single and double Vilenkin-Fourier series and related results %J Mathematica Bohemica %D 2024 %P 129-166 %V 149 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0023-22/ %R 10.21136/MB.2023.0023-22 %G en %F 10_21136_MB_2023_0023_22
Kalsariya, Nayna Govindbhai; Ghodadra, Bhikha Lila. Generalized absolute convergence of single and double Vilenkin-Fourier series and related results. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 129-166. doi: 10.21136/MB.2023.0023-22
[1] Fine, N. J.: On the Walsh functions. Trans. Am. Math. Soc. 65 (1949), 372-414. | DOI | MR | JFM
[2] Folland, G. B.: A Course in Abstract Harmonic Analysis. Textbooks in Mathematics. CRC Press, Boca Raton (2016). | DOI | MR | JFM
[3] Ghodadra, B. L.: On $\beta$-absolute convergence of Vilenkin-Fourier series with small gaps. Kragujevac J. Math. 40 (2016), 91-104. | DOI | MR | JFM
[4] Gogoladze, L., Meskhia, R.: On the absolute convergence of trigonometric Fourier series. Proc. A. Razmadze Math. Inst. 141 (2006), 29-40. | MR | JFM
[5] Golubov, B., Efimov, A., Skvortsov, V.: Walsh Series and Transforms: Theory and Applications. Mathematics and Its Applications. Soviet Series 64. Kluwer, Dordrecht (1991). | DOI | MR | JFM
[6] Golubov, B. I., Volosivets, S. S.: Generalized absolute convergence of single and double Fourier series with respect to multiplicative systems. Anal. Math. 38 (2012), 105-122. | DOI | MR | JFM
[7] Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis. Vol. I. Structure of Topological Groups. Integration Theory. Group Representations. Die Grundlehren der mathematischen Wissenschaften 115. Springer, Berlin (1963). | DOI | MR | JFM
[8] Izumi, M., Izumi, S.: On absolute convergence of Fourier series. Ark. Mat. 7 (1967), 177-184. | DOI | MR | JFM
[9] Móricz, F.: Absolute convergence of Walsh-Fourier series and related results. Anal. Math. 36 (2010), 275-286. | DOI | MR | JFM
[10] Móricz, F., Veres, A.: Absolute convergence of double Walsh-Fourier series and related results. Acta Math. Hung. 131 (2011), 122-137. | DOI | MR | JFM
[11] Onneweer, C. W.: Absolute convergence of Fourier series on certain groups. Duke Math. J. 39 (1972), 599-609. | DOI | MR | JFM
[12] Quek, T. S., Yap, L. Y. H.: Absolute convergence of Vilenkin-Fourier series. J. Math. Anal. Appl. 74 (1980), 1-14. | DOI | MR | JFM
[13] Volosivets, S. S., Kuznetsova, M. A.: Generalized absolute convergence of single and double series in multiplicative systems. Math. Notes 107 (2020), 217-230. | DOI | MR | JFM
[14] Walker, P. L.: Lipschitz classes on 0-dimensional groups. Proc. Camb. Philos. Soc. 63 (1967), 923-928. | DOI | MR | JFM
[15] Younis, M. S.: On the absolute convergence of Vilenkin-Fourier series. J. Math. Anal. Appl. 163 (1992), 15-19. | DOI | MR | JFM
Cité par Sources :