Generalized absolute convergence of single and double Vilenkin-Fourier series and related results
Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 129-166
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the Vilenkin orthonormal system on a Vilenkin group $G$ and the Vilenkin-Fourier coefficients $\hat {f}(n)$, $n\in \mathbb {N}$, of functions $f\in L^p(G)$ for some $1
We consider the Vilenkin orthonormal system on a Vilenkin group $G$ and the Vilenkin-Fourier coefficients $\hat {f}(n)$, $n\in \mathbb {N}$, of functions $f\in L^p(G)$ for some $1$. We obtain certain sufficient conditions for the finiteness of the series $\sum _{n=1}^{\infty }a_n|\hat {f}(n)|^r$, where $\{a_n\}$ is a given sequence of positive real numbers satisfying a mild assumption and $0$. We also find analogous conditions for the double Vilenkin-Fourier series. These sufficient conditions are in terms of (either global or local) moduli of continuity of $f$ and give multiplicative analogue of some results due to Móricz (2010), Móricz and Veres (2011), Golubov and Volosivets (2012), and Volosivets and Kuznetsova (2020).
DOI : 10.21136/MB.2023.0023-22
Classification : 42C10
Keywords: generalized absolute convergence; Vilenkin-Fourier series; modulus of continuity; multiplicative system
@article{10_21136_MB_2023_0023_22,
     author = {Kalsariya, Nayna Govindbhai and Ghodadra, Bhikha Lila},
     title = {Generalized absolute convergence of single and double {Vilenkin-Fourier} series and related results},
     journal = {Mathematica Bohemica},
     pages = {129--166},
     year = {2024},
     volume = {149},
     number = {2},
     doi = {10.21136/MB.2023.0023-22},
     mrnumber = {4767005},
     zbl = {07893416},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0023-22/}
}
TY  - JOUR
AU  - Kalsariya, Nayna Govindbhai
AU  - Ghodadra, Bhikha Lila
TI  - Generalized absolute convergence of single and double Vilenkin-Fourier series and related results
JO  - Mathematica Bohemica
PY  - 2024
SP  - 129
EP  - 166
VL  - 149
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0023-22/
DO  - 10.21136/MB.2023.0023-22
LA  - en
ID  - 10_21136_MB_2023_0023_22
ER  - 
%0 Journal Article
%A Kalsariya, Nayna Govindbhai
%A Ghodadra, Bhikha Lila
%T Generalized absolute convergence of single and double Vilenkin-Fourier series and related results
%J Mathematica Bohemica
%D 2024
%P 129-166
%V 149
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0023-22/
%R 10.21136/MB.2023.0023-22
%G en
%F 10_21136_MB_2023_0023_22
Kalsariya, Nayna Govindbhai; Ghodadra, Bhikha Lila. Generalized absolute convergence of single and double Vilenkin-Fourier series and related results. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 129-166. doi: 10.21136/MB.2023.0023-22

[1] Fine, N. J.: On the Walsh functions. Trans. Am. Math. Soc. 65 (1949), 372-414. | DOI | MR | JFM

[2] Folland, G. B.: A Course in Abstract Harmonic Analysis. Textbooks in Mathematics. CRC Press, Boca Raton (2016). | DOI | MR | JFM

[3] Ghodadra, B. L.: On $\beta$-absolute convergence of Vilenkin-Fourier series with small gaps. Kragujevac J. Math. 40 (2016), 91-104. | DOI | MR | JFM

[4] Gogoladze, L., Meskhia, R.: On the absolute convergence of trigonometric Fourier series. Proc. A. Razmadze Math. Inst. 141 (2006), 29-40. | MR | JFM

[5] Golubov, B., Efimov, A., Skvortsov, V.: Walsh Series and Transforms: Theory and Applications. Mathematics and Its Applications. Soviet Series 64. Kluwer, Dordrecht (1991). | DOI | MR | JFM

[6] Golubov, B. I., Volosivets, S. S.: Generalized absolute convergence of single and double Fourier series with respect to multiplicative systems. Anal. Math. 38 (2012), 105-122. | DOI | MR | JFM

[7] Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis. Vol. I. Structure of Topological Groups. Integration Theory. Group Representations. Die Grundlehren der mathematischen Wissenschaften 115. Springer, Berlin (1963). | DOI | MR | JFM

[8] Izumi, M., Izumi, S.: On absolute convergence of Fourier series. Ark. Mat. 7 (1967), 177-184. | DOI | MR | JFM

[9] Móricz, F.: Absolute convergence of Walsh-Fourier series and related results. Anal. Math. 36 (2010), 275-286. | DOI | MR | JFM

[10] Móricz, F., Veres, A.: Absolute convergence of double Walsh-Fourier series and related results. Acta Math. Hung. 131 (2011), 122-137. | DOI | MR | JFM

[11] Onneweer, C. W.: Absolute convergence of Fourier series on certain groups. Duke Math. J. 39 (1972), 599-609. | DOI | MR | JFM

[12] Quek, T. S., Yap, L. Y. H.: Absolute convergence of Vilenkin-Fourier series. J. Math. Anal. Appl. 74 (1980), 1-14. | DOI | MR | JFM

[13] Volosivets, S. S., Kuznetsova, M. A.: Generalized absolute convergence of single and double series in multiplicative systems. Math. Notes 107 (2020), 217-230. | DOI | MR | JFM

[14] Walker, P. L.: Lipschitz classes on 0-dimensional groups. Proc. Camb. Philos. Soc. 63 (1967), 923-928. | DOI | MR | JFM

[15] Younis, M. S.: On the absolute convergence of Vilenkin-Fourier series. J. Math. Anal. Appl. 163 (1992), 15-19. | DOI | MR | JFM

Cité par Sources :