Nonlinear fourth order problems with asymptotically linear nonlinearities
Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 209-223 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate some nonlinear elliptic problems of the form $$ \Delta ^{2}v + \sigma (x) v= h(x,v)\quad \mbox {in}\ \Omega ,\quad v=\Delta v=0 \quad \mbox {on}\ \partial \Omega , \eqno ({\rm P}) $$ where $\Omega $ is a regular bounded domain in $\mathbb {R}^{N}$, $N\geq 2$, $\sigma (x)$ a positive function in $L^{\infty }(\Omega )$, and the nonlinearity $h(x,t)$ is indefinite. We prove the existence of solutions to the problem (P) when the function $h(x,t)$ is asymptotically linear at infinity by using variational method but without the Ambrosetti-Rabinowitz condition. Also, we consider the case when the nonlinearities are superlinear and subcritical.
We investigate some nonlinear elliptic problems of the form $$ \Delta ^{2}v + \sigma (x) v= h(x,v)\quad \mbox {in}\ \Omega ,\quad v=\Delta v=0 \quad \mbox {on}\ \partial \Omega , \eqno ({\rm P}) $$ where $\Omega $ is a regular bounded domain in $\mathbb {R}^{N}$, $N\geq 2$, $\sigma (x)$ a positive function in $L^{\infty }(\Omega )$, and the nonlinearity $h(x,t)$ is indefinite. We prove the existence of solutions to the problem (P) when the function $h(x,t)$ is asymptotically linear at infinity by using variational method but without the Ambrosetti-Rabinowitz condition. Also, we consider the case when the nonlinearities are superlinear and subcritical.
DOI : 10.21136/MB.2023.0008-22
Classification : 35A15, 35J35, 35J60, 35J91
Keywords: asymptotically linear; mountain pass theorem; biharmonic equation; Cerami sequence
@article{10_21136_MB_2023_0008_22,
     author = {Amor Ben Ali, Abir and Dammak, Makkia},
     title = {Nonlinear fourth order problems with asymptotically linear nonlinearities},
     journal = {Mathematica Bohemica},
     pages = {209--223},
     year = {2024},
     volume = {149},
     number = {2},
     doi = {10.21136/MB.2023.0008-22},
     mrnumber = {4767008},
     zbl = {07893419},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0008-22/}
}
TY  - JOUR
AU  - Amor Ben Ali, Abir
AU  - Dammak, Makkia
TI  - Nonlinear fourth order problems with asymptotically linear nonlinearities
JO  - Mathematica Bohemica
PY  - 2024
SP  - 209
EP  - 223
VL  - 149
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0008-22/
DO  - 10.21136/MB.2023.0008-22
LA  - en
ID  - 10_21136_MB_2023_0008_22
ER  - 
%0 Journal Article
%A Amor Ben Ali, Abir
%A Dammak, Makkia
%T Nonlinear fourth order problems with asymptotically linear nonlinearities
%J Mathematica Bohemica
%D 2024
%P 209-223
%V 149
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0008-22/
%R 10.21136/MB.2023.0008-22
%G en
%F 10_21136_MB_2023_0008_22
Amor Ben Ali, Abir; Dammak, Makkia. Nonlinear fourth order problems with asymptotically linear nonlinearities. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 209-223. doi: 10.21136/MB.2023.0008-22

Cité par Sources :