Nonlinear fourth order problems with asymptotically linear nonlinearities
Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 209-223
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate some nonlinear elliptic problems of the form $$ \Delta ^{2}v + \sigma (x) v= h(x,v)\quad \mbox {in}\ \Omega ,\quad v=\Delta v=0 \quad \mbox {on}\ \partial \Omega , \eqno ({\rm P}) $$ where $\Omega $ is a regular bounded domain in $\mathbb {R}^{N}$, $N\geq 2$, $\sigma (x)$ a positive function in $L^{\infty }(\Omega )$, and the nonlinearity $h(x,t)$ is indefinite. We prove the existence of solutions to the problem (P) when the function $h(x,t)$ is asymptotically linear at infinity by using variational method but without the Ambrosetti-Rabinowitz condition. Also, we consider the case when the nonlinearities are superlinear and subcritical.
We investigate some nonlinear elliptic problems of the form $$ \Delta ^{2}v + \sigma (x) v= h(x,v)\quad \mbox {in}\ \Omega ,\quad v=\Delta v=0 \quad \mbox {on}\ \partial \Omega , \eqno ({\rm P}) $$ where $\Omega $ is a regular bounded domain in $\mathbb {R}^{N}$, $N\geq 2$, $\sigma (x)$ a positive function in $L^{\infty }(\Omega )$, and the nonlinearity $h(x,t)$ is indefinite. We prove the existence of solutions to the problem (P) when the function $h(x,t)$ is asymptotically linear at infinity by using variational method but without the Ambrosetti-Rabinowitz condition. Also, we consider the case when the nonlinearities are superlinear and subcritical.
DOI : 10.21136/MB.2023.0008-22
Classification : 35A15, 35J35, 35J60, 35J91
Keywords: asymptotically linear; mountain pass theorem; biharmonic equation; Cerami sequence
@article{10_21136_MB_2023_0008_22,
     author = {Amor Ben Ali, Abir and Dammak, Makkia},
     title = {Nonlinear fourth order problems with asymptotically linear nonlinearities},
     journal = {Mathematica Bohemica},
     pages = {209--223},
     year = {2024},
     volume = {149},
     number = {2},
     doi = {10.21136/MB.2023.0008-22},
     mrnumber = {4767008},
     zbl = {07893419},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0008-22/}
}
TY  - JOUR
AU  - Amor Ben Ali, Abir
AU  - Dammak, Makkia
TI  - Nonlinear fourth order problems with asymptotically linear nonlinearities
JO  - Mathematica Bohemica
PY  - 2024
SP  - 209
EP  - 223
VL  - 149
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0008-22/
DO  - 10.21136/MB.2023.0008-22
LA  - en
ID  - 10_21136_MB_2023_0008_22
ER  - 
%0 Journal Article
%A Amor Ben Ali, Abir
%A Dammak, Makkia
%T Nonlinear fourth order problems with asymptotically linear nonlinearities
%J Mathematica Bohemica
%D 2024
%P 209-223
%V 149
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0008-22/
%R 10.21136/MB.2023.0008-22
%G en
%F 10_21136_MB_2023_0008_22
Amor Ben Ali, Abir; Dammak, Makkia. Nonlinear fourth order problems with asymptotically linear nonlinearities. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 209-223. doi: 10.21136/MB.2023.0008-22

[1] Abid, I., Dammak, M., Douchich, I.: Stable solutions and bifurcation problem for asymptotically linear Helmholtz equations. Nonlinear Funct. Anal. Appl. 21 (2016), 15-31. | JFM

[2] Abid, I., Jleli, M., Trabelsi, N.: Weak solutions of quasilinear biharmonic problems with positive, increasing and convex nonlinearities. Anal. Appl., Singap. 6 (2008), 213-227. | DOI | MR | JFM

[3] Alnaser, L. A., Dammak, M.: Biharmonic problem with indefinite asymptotically linear nonlinearity. Int. J. Math. Comput. Sci. 16 (2021), 1355-1370. | MR | JFM

[4] Ambrosetti, A., Rabinowitz, P. H.: Dual variational methods in critical points theory and applications. J. Funct. Anal. 14 (1973), 349-381. | DOI | MR | JFM

[5] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011). | DOI | MR | JFM

[6] Cerami, G.: An existence criterion for the critical points on unbounded manifolds. Ist. Lombardo Accad. Sci. Lett., Rend., Sez. A 112 (1978), 332-336 Italian. | MR | JFM

[7] Chen, S., Santos, C. A., Yang, M., Zhou, J.: Bifurcation analysis for a modified quasilinear equation with negative exponent. Adv. Nonlinear Anal. 11 (2022), 684-701. | DOI | MR | JFM

[8] Costa, D. G., Magalhães, C. A.: Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal., Theory Methods Appl. 23 (1994), 1401-1412. | DOI | MR | JFM

[9] Costa, D. G., Miyagaki, O. H.: Nontrivial solutions for perturbations of the $p$-Laplacian on unbounded domains. J. Math. Anal. Appl. 193 (1995), 737-755. | DOI | MR | JFM

[10] D'Ambrosio, L., Mitidieri, E.: Entire solutions of certain fourth order elliptic problems and related inequalities. Adv. Nonlinear Anal. 11 (2022), 785-829. | DOI | MR | JFM

[11] Dammak, M., Jaidane, R., Jerbi, C.: Positive solutions for an asymptotically linear biharmonic problems. Nonlinear Funct. Anal. Appl. 22 (2017), 59-78. | JFM

[12] El-Abed, A., Ali, A. A. B., Dammak, M.: Schrödinger equation with asymptotically linear nonlinearities. Filomat 36 (2022), 629-639. | DOI | MR

[13] Jeanjean, L.: On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on $\Bbb{R}^N$. Proc. R. Soc. Edinb., Sect. A, Math. 129 (1999), 787-809. | DOI | MR | JFM

[14] Lian, W., Rădulescu, V. D., Xu, R., Yang, Y., Zhao, N.: Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations. Adv. Calc. Var. 14 (2021), 589-611. | DOI | MR | JFM

[15] Liu, Y., Wang, Z.: Biharmonic equations with asymptotically linear nonlinearities. Acta Math. Sci., Ser. B, Engl. Ed. 27 (2007), 549-560. | DOI | MR | JFM

[16] Martel, Y.: Uniqueness of weak extremal solutions of nonlinear elliptic problems. Houston J. Math. 23 (1997), 161-168. | MR | JFM

[17] Mironescu, P., Rădulescu, V. D.: A bifurcation problem associated to a convex, asymtotically linear function. C. R. Acad. Sci., Paris, Sér. I 316 (1993), 667-672. | MR | JFM

[18] Mironescu, P., Rădulescu, V. D.: The study of a bifurcation problem associated to an asymptotically linear function. Nonlinear Anal., Theory Methods Appl. 26 (1996), 857-875. | DOI | MR | JFM

[19] Papageorgiou, N. S., Rădulescu, V. D., Repovš, D. D.: Existence and multiplicity of solutions for double-phase Robin problems. Bull. Lond. Math. Soc. 52 (2020), 546-560. | DOI | MR | JFM

[20] Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. Regional Conference Series in Mathematics 65. AMS, Providence (1986). | DOI | MR | JFM

[21] Sâanouni, S., Trabelsi, N.: A bifurcation problem associated to an asymptotically linear function. Acta Math. Sci., Ser. B, Engl. Ed. 36 (2016), 1731-7146. | DOI | MR | JFM

[22] Sâanouni, S., Trabelsi, N.: Bifurcation for elliptic forth-order problems with quasilinear source term. Electronic J. Differ. Equ. 92 (2016), Article ID 92, 16 pages. | MR | JFM

[23] Schechter, M.: Superlinear elliptic boundary value problems. Manuscr. Math. 86 (1995), 253-265. | DOI | MR | JFM

[24] Stuart, C. A., Zhou, H. S.: A variational problem related to self-trapping of an electromagnetic field. Math. Methods Appl. Sci. 19 (1996), 1397-1407. | DOI | MR | JFM

[25] Stuart, C. A., Zhou, H. S.: Applying the mountain pass theorem to asymptotically linear elliptic equation on $\Bbb{R}^N$. Commun. Partial Differ. Equations 24 (1999), 1731-1758. | DOI | MR | JFM

[26] Zahed, H.: Existence investigation of a fourth order semi-linear weighted problem. Int. J. Math. Comput. Sci. 16 (2021), 687-704. | MR | JFM

[27] Zahed, H., Alnaser, L. A.: Elliptic weighted problem with indefinite asymptotically linear nonlinearity. J. Math. Stat. 17 (2021), 13-21. | DOI

[28] Zhou, H. S.: An application of a mountain pass theorem. Acta Math. Sin., Engl. Ser. 18 (2002), 27-36. | DOI | MR | JFM

Cité par Sources :