Nonlinear fourth order problems with asymptotically linear nonlinearities
Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 209-223
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We investigate some nonlinear elliptic problems of the form $$ \Delta ^{2}v + \sigma (x) v= h(x,v)\quad \mbox {in}\ \Omega ,\quad v=\Delta v=0 \quad \mbox {on}\ \partial \Omega , \eqno ({\rm P}) $$ where $\Omega $ is a regular bounded domain in $\mathbb {R}^{N}$, $N\geq 2$, $\sigma (x)$ a positive function in $L^{\infty }(\Omega )$, and the nonlinearity $h(x,t)$ is indefinite. We prove the existence of solutions to the problem (P) when the function $h(x,t)$ is asymptotically linear at infinity by using variational method but without the Ambrosetti-Rabinowitz condition. Also, we consider the case when the nonlinearities are superlinear and subcritical.
We investigate some nonlinear elliptic problems of the form $$ \Delta ^{2}v + \sigma (x) v= h(x,v)\quad \mbox {in}\ \Omega ,\quad v=\Delta v=0 \quad \mbox {on}\ \partial \Omega , \eqno ({\rm P}) $$ where $\Omega $ is a regular bounded domain in $\mathbb {R}^{N}$, $N\geq 2$, $\sigma (x)$ a positive function in $L^{\infty }(\Omega )$, and the nonlinearity $h(x,t)$ is indefinite. We prove the existence of solutions to the problem (P) when the function $h(x,t)$ is asymptotically linear at infinity by using variational method but without the Ambrosetti-Rabinowitz condition. Also, we consider the case when the nonlinearities are superlinear and subcritical.
DOI :
10.21136/MB.2023.0008-22
Classification :
35A15, 35J35, 35J60, 35J91
Keywords: asymptotically linear; mountain pass theorem; biharmonic equation; Cerami sequence
Keywords: asymptotically linear; mountain pass theorem; biharmonic equation; Cerami sequence
@article{10_21136_MB_2023_0008_22,
author = {Amor Ben Ali, Abir and Dammak, Makkia},
title = {Nonlinear fourth order problems with asymptotically linear nonlinearities},
journal = {Mathematica Bohemica},
pages = {209--223},
year = {2024},
volume = {149},
number = {2},
doi = {10.21136/MB.2023.0008-22},
mrnumber = {4767008},
zbl = {07893419},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0008-22/}
}
TY - JOUR AU - Amor Ben Ali, Abir AU - Dammak, Makkia TI - Nonlinear fourth order problems with asymptotically linear nonlinearities JO - Mathematica Bohemica PY - 2024 SP - 209 EP - 223 VL - 149 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0008-22/ DO - 10.21136/MB.2023.0008-22 LA - en ID - 10_21136_MB_2023_0008_22 ER -
%0 Journal Article %A Amor Ben Ali, Abir %A Dammak, Makkia %T Nonlinear fourth order problems with asymptotically linear nonlinearities %J Mathematica Bohemica %D 2024 %P 209-223 %V 149 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0008-22/ %R 10.21136/MB.2023.0008-22 %G en %F 10_21136_MB_2023_0008_22
Amor Ben Ali, Abir; Dammak, Makkia. Nonlinear fourth order problems with asymptotically linear nonlinearities. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 209-223. doi: 10.21136/MB.2023.0008-22
Cité par Sources :