Some extensions of Chu's formulas and further combinatorial identities
Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 397-408
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present some extensions of Chu's formulas and several striking generalizations of some well-known combinatorial identities. As applications, some new identities on binomial sums, harmonic numbers, and the generalized harmonic numbers are also derived.
We present some extensions of Chu's formulas and several striking generalizations of some well-known combinatorial identities. As applications, some new identities on binomial sums, harmonic numbers, and the generalized harmonic numbers are also derived.
DOI : 10.21136/MB.2023.0003-23
Classification : 05A10, 05A19, 11B65
Keywords: partial fraction decomposition; polynomial; combinatorial identity; harmonic number; generalized harmonic number; complete Bell polynomial
@article{10_21136_MB_2023_0003_23,
     author = {Zriaa, Said and Mou\c{c}ouf, Mohammed},
     title = {Some extensions of {Chu's} formulas and further combinatorial identities},
     journal = {Mathematica Bohemica},
     pages = {397--408},
     year = {2024},
     volume = {149},
     number = {3},
     doi = {10.21136/MB.2023.0003-23},
     mrnumber = {4801108},
     zbl = {07953709},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0003-23/}
}
TY  - JOUR
AU  - Zriaa, Said
AU  - Mouçouf, Mohammed
TI  - Some extensions of Chu's formulas and further combinatorial identities
JO  - Mathematica Bohemica
PY  - 2024
SP  - 397
EP  - 408
VL  - 149
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0003-23/
DO  - 10.21136/MB.2023.0003-23
LA  - en
ID  - 10_21136_MB_2023_0003_23
ER  - 
%0 Journal Article
%A Zriaa, Said
%A Mouçouf, Mohammed
%T Some extensions of Chu's formulas and further combinatorial identities
%J Mathematica Bohemica
%D 2024
%P 397-408
%V 149
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0003-23/
%R 10.21136/MB.2023.0003-23
%G en
%F 10_21136_MB_2023_0003_23
Zriaa, Said; Mouçouf, Mohammed. Some extensions of Chu's formulas and further combinatorial identities. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 397-408. doi: 10.21136/MB.2023.0003-23

[1] Alzer, H., Chapman, R.: On Boole's formula for factorials. Australas. J. Comb. 59 (2014), 333-336. | MR | JFM

[2] Andrews, G. E.: Identities in combinatorics. I. On sorting two ordered sets. Discrete Math. 11 (1975), 97-106. | DOI | MR | JFM

[3] Anglani, R., Barile, M.: Two very short proofs of a combinatorial identity. Integers 5 (2005), Article ID A18, 3 pages. | MR | JFM

[4] Batir, N.: On some combinatorial identities and harmonic sums. Int. J. Number Theory 13 (2017), 1695-1709. | DOI | MR | JFM

[5] Belbahri, K.: Scale invariant operators and combinatorial expansions. Adv. Appl. Math. 45 (2010), 548-563. | DOI | MR | JFM

[6] Boole, G.: Calculus of Finite Differences. Chelsea, New York (1958). | MR | JFM

[7] Choi, J.: Summation formulas involving binomial coefficients, harmonic numbers, and generalized harmonic numbers. Abst. Appl. Anal. 2014 (2014), Article ID 501906, 10 pages. | DOI | MR | JFM

[8] Chu, W.: Harmonic number identities and Hermite-Padé approximations to the logarithm function. J. Approximation Theory 137 (2005), 42-56. | DOI | MR | JFM

[9] Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions. D. Reidel, Dordrecht (1974). | DOI | MR | JFM

[10] Driver, K., Prodinger, H., Schneider, C., Weideman, J. A. C.: Padé approximations to the logarithm. II. Identities, recurrences and symbolic computation. Ramanujan J. 11 (2006), 139-158. | DOI | MR | JFM

[11] Elsner, C.: On recurrence formulae for sums involving binomial coefficients. Fibonacci Q. 43 (2005), 31-45. | DOI | MR | JFM

[12] Flajolet, P., Vepstas, L.: On differences of zeta values. J. Comput. Appl. Math. 220 (2008), 58-73. | DOI | MR | JFM

[13] Gonzáles, L.: A new approach for proving or generating combinatorial identities. Int. J. Math. Educ. Sci. Technol. 41 (2010), 359-372. | DOI | MR | JFM

[14] Gould, H. W.: Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial Coefficient Summations. Henry W. Gould, Morgantown (1972). | MR | JFM

[15] Gould, H. W.: Euler's formula for $n$th differences of powers. Am. Math. Mon. 85 (1978), 450-467. | DOI | MR | JFM

[16] Graham, R. L., Knuth, D. E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, Reading (1989). | MR | JFM

[17] Holland, F.: A proof, a consequence and an application of Boole's combinatorial identity. Ir. Math. Soc. Bull. 89 (2022), 25-28. | DOI | MR | JFM

[18] Ismail, M. E. H., Stanton, D.: Some combinatorial and analytical identities. Ann. Comb. 16 (2012), 755-771. | DOI | MR | JFM

[19] Karatsuba, E. A.: On a method for constructing a family of approximations of zeta constants by rational fractions. Probl. Inf. Transm. 51 (2015), 378-390. | DOI | MR | JFM

[20] Karatsuba, E. A.: On a method of evaluation of zeta-constants based on one number theoretic approach. Available at , 19 pages. | arXiv | DOI | MR

[21] Karatsuba, E. A.: On an identity with binomial coefficients. Math. Notes 105 (2019), 145-147. | DOI | MR | JFM

[22] Katsuura, H.: Summations involving binomial coefficients. Coll. Math. J. 40 (2009), 275-278. | DOI | MR

[23] Krantz, S. G., Parks, H. R.: A Primer of Real Analytic Functions. Birkhäuser Advances Texts. Basler Lehrbücher. Birkhäuser, Boston (2002). | DOI | MR | JFM

[24] Krivokolesko, V. P.: Integral representations for linearly convex polyhedra and some combinatorial identities. J. Sib. Fed. Univ., Math. Phys. 2 (2009), 176-188. | JFM

[25] Mouçouf, M., Zriaa, S.: A new approach for computing the inverse of confluent Vandermonde matrices via Taylor's expansion. Linear Multilinear Algebra 70 (2022), 5973-5986. | DOI | MR | JFM

[26] Nakata, T.: Another probabilistic proof of a binomial identity. Fibonacci Q. 52 (2014), 139-140. | DOI | MR | JFM

[27] Peterson, J.: A probabilistic proof of a binomial identity. Am. Math. Mon. 120 (2013), 558-562. | DOI | MR | JFM

[28] Pohoata, C.: Boole's formula as a consequence of Lagrange's interpolating polynomial theorem. Integers 8 (2008), Article ID A23, 2 pages. | MR | JFM

[29] Quaintance, J.: Combinatorial Identities for Stirling Numbers: The Unpublished Notes of H. W. Gould. World Scientific, Singapore (2015). | DOI | MR | JFM

[30] Sarmanov, O. V., Sevast'yanov, B. A., Tarakanov, V. E.: Some combinatorial identities. Math. Notes 11 (1972), 77-80. | DOI | MR | JFM

[31] Sofo, A., Srivastava, H. M.: Identities for the harmonic numbers and binomial coefficients. Ramanujan. J. 25 (2011), 93-113. | DOI | MR | JFM

[32] Spivey, M. Z.: Probabilistic proofs of a binomial identity, its inverse, and generalizations. Am. Math. Mon. 123 (2016), 175-180. | DOI | MR | JFM

[33] Strehl, V.: Binomial identities -- combinatorial and algorithmic aspects. Discrete. Math. 136 (1994), 309-346. | DOI | MR | JFM

[34] Vellaisamy, P.: On probabilistic proofs of certain binomial identities. Am. Stat. 69 (2015), 241-243. | DOI | MR | JFM

[35] Weideman, J. A. C.: Padé approximations to the logarithm. I. Derivation via differential equations. Quaest. Math. 28 (2005), 375-390. | DOI | MR | JFM

[36] Wituła, R., Hetmaniok, E., S{ł}ota, D., Gawrońska, N.: Convolution identities for central binomial numbers. Int. J. Pure Appl. Math. 85 (2013), 171-178. | DOI

[37] Zhu, J.-M., Luo, Q.-M.: A novel proof of two partial fraction decompositions. Adv. Difference Equ. 2021 (2021), Article ID 274, 8 pages. | DOI | MR | JFM

Cité par Sources :