Existence of weak solutions for steady flows of electrorheological fluid with Navier-slip type boundary conditions
Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 567-585
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove the existence of weak solutions for steady flows of electrorheological fluids with homogeneous Navier-slip type boundary conditions provided $p(x)>2n/(n+2)$. To prove this, we show Poincaré- and Korn-type inequalities, and then construct Lipschitz truncation functions preserving the zero normal component in variable exponent Sobolev spaces.
We prove the existence of weak solutions for steady flows of electrorheological fluids with homogeneous Navier-slip type boundary conditions provided $p(x)>2n/(n+2)$. To prove this, we show Poincaré- and Korn-type inequalities, and then construct Lipschitz truncation functions preserving the zero normal component in variable exponent Sobolev spaces.
DOI : 10.21136/MB.2022.0200-20
Classification : 35A23, 35D30, 46E30, 46E35, 76A05, 76D03
Keywords: existence of weak solutions; electrorheological fluid; Lipschitz truncation; variable exponent
@article{10_21136_MB_2022_0200_20,
     author = {Sin, Cholmin and Ri, Sin-Il},
     title = {Existence of weak solutions for steady flows of electrorheological fluid with {Navier-slip} type boundary conditions},
     journal = {Mathematica Bohemica},
     pages = {567--585},
     year = {2022},
     volume = {147},
     number = {4},
     doi = {10.21136/MB.2022.0200-20},
     mrnumber = {4512174},
     zbl = {07655827},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0200-20/}
}
TY  - JOUR
AU  - Sin, Cholmin
AU  - Ri, Sin-Il
TI  - Existence of weak solutions for steady flows of electrorheological fluid with Navier-slip type boundary conditions
JO  - Mathematica Bohemica
PY  - 2022
SP  - 567
EP  - 585
VL  - 147
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0200-20/
DO  - 10.21136/MB.2022.0200-20
LA  - en
ID  - 10_21136_MB_2022_0200_20
ER  - 
%0 Journal Article
%A Sin, Cholmin
%A Ri, Sin-Il
%T Existence of weak solutions for steady flows of electrorheological fluid with Navier-slip type boundary conditions
%J Mathematica Bohemica
%D 2022
%P 567-585
%V 147
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0200-20/
%R 10.21136/MB.2022.0200-20
%G en
%F 10_21136_MB_2022_0200_20
Sin, Cholmin; Ri, Sin-Il. Existence of weak solutions for steady flows of electrorheological fluid with Navier-slip type boundary conditions. Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 567-585. doi: 10.21136/MB.2022.0200-20

[1] Abbatiello, A., Crispo, F., Maremonti, P.: Electrorheological fluids: Ill posedness of uniqueness backward in time. Nonlinear Anal., Theory Methods Appl., Ser. A 170 (2018), 47-69. | DOI | MR | JFM

[2] Bauer, S., Pauly, D.: On Korn's first inequality for mixed tangential and normal boundary conditions on bounded Lipschitz domains in $\mathbb{R}^N$. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 62 (2016), 173-188. | DOI | MR | JFM

[3] Veiga, H. Beirão da: Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions. Adv. Differ. Equ. 9 (2004), 1079-1114. | MR | JFM

[4] Veiga, H. Beirão da: On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or non-slip boundary conditions. Commun. Pure Appl. Math. 58 (2005), 552-577. | DOI | MR | JFM

[5] Bögelein, V., Duzaar, F., Habermann, J., Scheven, C.: Stationary electro-rheological fluids: Low order regularity for systems with discontinuous coefficients. Adv. Calc. Var. 5 (2012), 1-57. | DOI | MR | JFM

[6] Breit, D., Diening, L., Fuchs, M.: Solenoidal Lipschitz truncation and applications in fluid mechanics. J. Differ. Equations 253 (2012), 1910-1942. | DOI | MR | JFM

[7] Breit, D., Diening, L., Schwarzacher, S.: Solenoidal Lipschitz truncation for parabolic PDEs. Math. Models Methods Appl. Sci. 23 (2013), 2671-2700. | DOI | MR | JFM

[8] Bulíček, M., Gwiazda, P., Málek, J., Świerczewska-Gwiazda, A.: On unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math. Anal. 44 (2012), 2756-2801. | DOI | MR | JFM

[9] Bulíček, M., Málek, J., Rajagopal, K. R.: Navier's slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity. Indiana Univ. Math. J. 56 (2007), 51-85. | DOI | MR | JFM

[10] Chen, P., Xiao, Y., Zhang, H.: Vanishing viscosity limit for the 3D nonhomogeneous incompressible Navier-Stokes equations with a slip boundary condition. Math. Methods Appl. Sci. 40 (2017), 5925-5932. | DOI | MR | JFM

[11] Crispo, F.: A note on the existence and uniqueness of time-periodic electro-rheological flows. Acta Appl. Math. 132 (2014), 237-250. | DOI | MR | JFM

[12] Desvillettes, L., Villani, C.: On a variant of Korn's inequality arising in statistical mechanics. ESAIM, Control Optim. Calc. Var. 8 (2002), 603-619. | DOI | MR | JFM

[13] Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation. Invent. Math. 159 (2005), 245-316. | DOI | MR | JFM

[14] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011). | DOI | MR | JFM

[15] Diening, L., Málek, J., Steinhauer, M.: On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications. ESAIM, Control Optim. Calc. Var. 14 (2008), 211-232. | DOI | MR | JFM

[16] Diening, L., Růžička, M.: An existence result for non-Newtonian fluids in non-regular domains. Discrete Contin. Dyn. Syst., Ser. S 3 (2010), 255-268. | DOI | MR | JFM

[17] Diening, L., Růžička, M., Schumacher, K.: A decomposition technique for John domains. Ann. Acad. Sci. Fenn., Math. 35 (2010), 87-114. | DOI | MR | JFM

[18] Diening, L., Schwarzacher, S., Stroffolini, B., Verde, A.: Parabolic Lipschitz truncation and caloric approximation. Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 120, 27 pages. | DOI | MR | JFM

[19] Ebmeyer, C.: Regularity in Sobolev spaces of steady flows of fluids with shear-dependent viscosity. Math. Methods Appl. Sci. 29 (2006), 1687-1707. | DOI | MR | JFM

[20] Fan, X.: Boundary trace embedding theorems for variable exponent Sobolev spaces. J. Math. Anal. Appl. 339 (2008), 1395-1412. | DOI | MR | JFM

[21] Frehse, J., Málek, J., Steinhauer, M.: An existence result for fluids with shear dependent viscosity---steady flows. Nonlinear Anal., Theory Methods Appl. 30 (1997), 3041-3049. | DOI | MR | JFM

[22] Frehse, J., Málek, J., Steinhauer, M.: On analysis of steady flows of fluids with sheardependent viscosity based on the Lipschitz truncation method. SIAM J. Math. Anal. 34 (2003), 1064-1083. | DOI | MR | JFM

[23] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems. Springer Monographs in Mathematics. Springer, New York (2011). | DOI | MR | JFM

[24] Jiang, R., Kauranen, A.: Korn's inequality and John domains. Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 109, 18 pages. | DOI | MR | JFM

[25] Kaplický, P., Tichý, J.: Boundary regularity of flows under perfect slip boundary conditions. Cent. Eur. J. Math. 11 (2013), 1243-1263. | DOI | MR | JFM

[26] Kučera, P., Neustupa, J.: On robustness of a strong solution to the Navier-Stokes equations with Navier's boundary conditions in the $L^3$-norm. Nonlinearity 30 (2017), 1564-1583. | DOI | MR | JFM

[27] Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969). | MR | JFM

[28] Li, Y., Li, K.: Existence of the solution to stationary Navier-Stokes equations with nonlinear slip boundary conditions. J. Math. Anal. Appl. 381 (2011), 1-9. | DOI | MR | JFM

[29] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969), French. | MR | JFM

[30] Mácha, V., Tichý, J.: Higher integrability of solutions to generalized Stokes system under perfect slip boundary conditions. J. Math. Fluid Mech. 16 (2014), 823-845. | DOI | MR | JFM

[31] Malý, J., Ziemer, W. P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations. Mathematical Surveys and Monographs 51. American Mathematical Society, Providence (1997). | DOI | MR | JFM

[32] Neustupa, J., Penel, P.: On regularity of a weak solution to the Navier-Stokes equations with the generalized Navier slip boundary conditions. Adv. Math. Phys. 2018 (2018), Article ID 4617020, 7 pages. | DOI | MR | JFM

[33] Rădulescu, D. V., Repovš, D. D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). | DOI | MR | JFM

[34] Růžička, M.: A note on steady flow of fluids with shear dependent viscosity. Nonlinear Anal., Theory Methods Appl. 30 (1997), 3029-3039. | DOI | MR | JFM

[35] Růžička, M.: Electrorheological Fluid: Modeling and Mathematical Theory. Lecture Notes in Mathematics 1748. Springer, Berlin (2000). | DOI | MR | JFM

[36] Sin, C.: The existence of strong solutions to steady motion of electrorheological fluids in 3D cubic domain. J. Math. Anal. Appl. 445 (2017), 1025-1046. | DOI | MR | JFM

[37] Sin, C.: The existence of weak solutions for steady flow of electrorheological fluids with nonhomogeneous Dirichlet boundary condition. Nonlinear Anal., Theory Methods Appl., Ser. A 163 (2017), 146-162. | DOI | MR | JFM

[38] Sin, C.: Global regularity of weak solutions for steady motions of electrorheological fluids in 3D smooth domain. J. Math. Anal. Appl. 461 (2018), 752-776. | DOI | MR | JFM

[39] Sin, C.: Boundary partial regularity for steady flows of electrorheological fluids in 3D bounded domains. Nonlinear Anal., Theory Methods Appl., Ser. A 179 (2019), 309-343. | DOI | MR | JFM

[40] Solonnikov, V. A., Scadilov, V. E.: On a boundary value problem for a stationary system of Navier-Stokes equations. Proc. Steklov Inst. Math. 125 (1973), 186-199 translation from Trudy Mat. Inst. Steklov 125 1973 196-210. | MR | JFM

Cité par Sources :