Keywords: partial metric space; weak compatible mapping; hybrid pair of mapping
@article{10_21136_MB_2022_0197_20,
author = {Kumar, Santosh and Kessy, Johnson Allen},
title = {Fixed point theorems for hybrid pair of weak compatible mappings in partial metric spaces},
journal = {Mathematica Bohemica},
pages = {223--236},
year = {2023},
volume = {148},
number = {2},
doi = {10.21136/MB.2022.0197-20},
mrnumber = {4585578},
zbl = {07729574},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0197-20/}
}
TY - JOUR AU - Kumar, Santosh AU - Kessy, Johnson Allen TI - Fixed point theorems for hybrid pair of weak compatible mappings in partial metric spaces JO - Mathematica Bohemica PY - 2023 SP - 223 EP - 236 VL - 148 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0197-20/ DO - 10.21136/MB.2022.0197-20 LA - en ID - 10_21136_MB_2022_0197_20 ER -
%0 Journal Article %A Kumar, Santosh %A Kessy, Johnson Allen %T Fixed point theorems for hybrid pair of weak compatible mappings in partial metric spaces %J Mathematica Bohemica %D 2023 %P 223-236 %V 148 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0197-20/ %R 10.21136/MB.2022.0197-20 %G en %F 10_21136_MB_2022_0197_20
Kumar, Santosh; Kessy, Johnson Allen. Fixed point theorems for hybrid pair of weak compatible mappings in partial metric spaces. Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 223-236. doi: 10.21136/MB.2022.0197-20
[1] Abbas, M., Rhoades, B. E.: Common fixed point results for noncommuting mappings without continuity in generalized metric spaces. Appl. Math. Comput. 215 (2009), 262-269. | DOI | MR | JFM
[2] Al-Thagafi, M. A., Shahzad, N.: Generalized $I$-nonexpansive selfmaps and invariant approximations. Acta Math. Sin., Engl. Ser. 24 (2008), 867-876. | DOI | MR | JFM
[3] Altun, I., Romaguera, S.: Characterizations of partial metric completeness in terms of weakly contractive mappings having fixed point. Appl. Anal. Discrete Math. 6 (2012), 247-256. | DOI | MR | JFM
[4] Altun, I., Simsek, H.: Some fixed point theorems on dualistic partial metric spaces. J. Adv. Math. Stud. 1 (2008), 1-8. | MR | JFM
[5] Aydi, H., Abbas, M., Vetro, C.: Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces. Topology Appl. 159 (2012), 3234-3242. | DOI | MR | JFM
[6] Aydi, H., Felhi, A., Sahmim, S.: A Suzuki fixed point theorem for generalized multivalued mappings on metric-like spaces. Glas. Mat., III. Ser. 52 (2017), 147-161 \99999DOI99999 10.3336/gm.52.1.11 . | DOI | MR | JFM
[7] Aydi, H., Felhi, A., Sahmim, S.: 'Cirić-Berinde fixed point theorems for multi-valued mappings on $\alpha$-complete metric-like spaces. Filomat 31 (2017), 3727-3740. | DOI | MR | JFM
[8] Bouhadjera, H., Djoudi, A.: General common fixed point theorems for weakly compatible maps. Gen. Math. 16 (2008), 95-107. | MR | JFM
[9] Bukatin, M., Kopperman, R., Matthews, S., Pajoohesh, H.: Partial metric spaces. Am. Math. Mon. 116 (2009), 708-718. | DOI | MR | JFM
[10] Ćirić, L., Samet, B., Aydi, H., Vetro, C.: Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 218 (2011), 2398-2406. | DOI | MR | JFM
[11] Haghi, R. H., Rezapour, S., Shahzad, N.: Be careful on partial metric fixed point results. Topology Appl. 160 (2013), 450-454. | DOI | MR | JFM
[12] Jungck, G.: Compatible mappings and common fixed points. Int. J. Math. Math. Sci. 9 (1986), 771-779. | DOI | MR | JFM
[13] Kaneko, H., Sessa, S.: Fixed point theorems for compatible multi-valued and single-valued mappings. Int. J. Math. Math. Sci. 12 (1989), 257-262. | DOI | MR | JFM
[14] Kessy, J., Kumar, S., Kakiko, G.: Fixed points for hybrid pair of compatible mappings in partial metric spaces. Adv. Fixed Point Theory 7 (2017), 489-499. | MR
[15] Kubiak, T.: Fixed point theorems for contractive type multivalued mappings. Math. Jap. 30 (1985), 89-101. | MR | JFM
[16] Matthews, S. G.: Metric Domains for Completeness: PhD Thesis. University of Warwick, Warwick (1985) .
[17] Matthews, S. G.: Partial metric topology. Papers on General Topology and Applications Annals of the New York Academy of Sciences 728. New York Academy of Sciences, New York (1994), 183-197. | DOI | MR | JFM
[18] Murthy, P. P., Chang, S. S., Cho, Y. J., Sharma, B. K.: Compatible mappings of type $(A)$ and common fixed point theorems. Kyungpook Math. J. 32 (1992), 203-216 \99999MR99999 1203935 . | MR | JFM
[19] S. B. Nadler, Jr.: Multi-valued contraction mappings. Pac. J. Math. 30 (1969), 475-488 \99999DOI99999 10.2140/pjm.1969.30.475 . | MR | JFM
[20] Pathak, H. K.: Fixed point theorems for weak compatible multi-valued and single-valued mappings. Acta Math. Hung. 67 (1995), 69-78 \99999DOI99999 10.1007/BF01874520 . | MR | JFM
[21] Pathak, H. K., Khan, M. S.: A comparison of various types of compatible maps and common fixed points. Indian J. Pure Appl. Math. 28 (1997), 477-485. | MR | JFM
[22] Sessa, S.: On a weak commutativity condition of mappings in fixed point considerations. Publ. Inst. Math., Nouv. Sér. 32 (1982), 149-153. | MR | JFM
[23] Smithson, R. E.: Fixed points for contractive multifunctions. Proc. Am. Math. Soc. 27 (1971), 192-194 \99999DOI99999 10.1090/S0002-9939-1971-0267564-4 . | MR | JFM
[24] Vetro, C., Vetro, F.: Common fixed points of mappings satisfying implicit relations in partial metric spaces. J. Nonlinear Sci. Appl. 6 (2013), 152-161. | DOI | MR | JFM
Cité par Sources :