Fixed point theorems for hybrid pair of weak compatible mappings in partial metric spaces
Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 223-236
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The notions of compatible mappings play a crucial role in metrical fixed point theory. Partial metric spaces are a generalization of the notion of a metric space in the sense that distance of a point from itself is not necessarily zero. In this paper, we prove coincidence and fixed point theorems for a pair of single-valued and multi-valued weak compatible mappings on a complete partial metric space. Our main results generalize, in particular, the results of Kaneko and Sessa (1989), Pathak (1995) and Kessy, Kumar and Kakiko (2017). Examples that illustrate the generality of our results are also provided.
The notions of compatible mappings play a crucial role in metrical fixed point theory. Partial metric spaces are a generalization of the notion of a metric space in the sense that distance of a point from itself is not necessarily zero. In this paper, we prove coincidence and fixed point theorems for a pair of single-valued and multi-valued weak compatible mappings on a complete partial metric space. Our main results generalize, in particular, the results of Kaneko and Sessa (1989), Pathak (1995) and Kessy, Kumar and Kakiko (2017). Examples that illustrate the generality of our results are also provided.
DOI : 10.21136/MB.2022.0197-20
Classification : 47H10, 54H25
Keywords: partial metric space; weak compatible mapping; hybrid pair of mapping
@article{10_21136_MB_2022_0197_20,
     author = {Kumar, Santosh and Kessy, Johnson Allen},
     title = {Fixed point theorems for hybrid pair of weak compatible mappings in partial metric spaces},
     journal = {Mathematica Bohemica},
     pages = {223--236},
     year = {2023},
     volume = {148},
     number = {2},
     doi = {10.21136/MB.2022.0197-20},
     mrnumber = {4585578},
     zbl = {07729574},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0197-20/}
}
TY  - JOUR
AU  - Kumar, Santosh
AU  - Kessy, Johnson Allen
TI  - Fixed point theorems for hybrid pair of weak compatible mappings in partial metric spaces
JO  - Mathematica Bohemica
PY  - 2023
SP  - 223
EP  - 236
VL  - 148
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0197-20/
DO  - 10.21136/MB.2022.0197-20
LA  - en
ID  - 10_21136_MB_2022_0197_20
ER  - 
%0 Journal Article
%A Kumar, Santosh
%A Kessy, Johnson Allen
%T Fixed point theorems for hybrid pair of weak compatible mappings in partial metric spaces
%J Mathematica Bohemica
%D 2023
%P 223-236
%V 148
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0197-20/
%R 10.21136/MB.2022.0197-20
%G en
%F 10_21136_MB_2022_0197_20
Kumar, Santosh; Kessy, Johnson Allen. Fixed point theorems for hybrid pair of weak compatible mappings in partial metric spaces. Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 223-236. doi: 10.21136/MB.2022.0197-20

[1] Abbas, M., Rhoades, B. E.: Common fixed point results for noncommuting mappings without continuity in generalized metric spaces. Appl. Math. Comput. 215 (2009), 262-269. | DOI | MR | JFM

[2] Al-Thagafi, M. A., Shahzad, N.: Generalized $I$-nonexpansive selfmaps and invariant approximations. Acta Math. Sin., Engl. Ser. 24 (2008), 867-876. | DOI | MR | JFM

[3] Altun, I., Romaguera, S.: Characterizations of partial metric completeness in terms of weakly contractive mappings having fixed point. Appl. Anal. Discrete Math. 6 (2012), 247-256. | DOI | MR | JFM

[4] Altun, I., Simsek, H.: Some fixed point theorems on dualistic partial metric spaces. J. Adv. Math. Stud. 1 (2008), 1-8. | MR | JFM

[5] Aydi, H., Abbas, M., Vetro, C.: Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces. Topology Appl. 159 (2012), 3234-3242. | DOI | MR | JFM

[6] Aydi, H., Felhi, A., Sahmim, S.: A Suzuki fixed point theorem for generalized multivalued mappings on metric-like spaces. Glas. Mat., III. Ser. 52 (2017), 147-161 \99999DOI99999 10.3336/gm.52.1.11 . | DOI | MR | JFM

[7] Aydi, H., Felhi, A., Sahmim, S.: 'Cirić-Berinde fixed point theorems for multi-valued mappings on $\alpha$-complete metric-like spaces. Filomat 31 (2017), 3727-3740. | DOI | MR | JFM

[8] Bouhadjera, H., Djoudi, A.: General common fixed point theorems for weakly compatible maps. Gen. Math. 16 (2008), 95-107. | MR | JFM

[9] Bukatin, M., Kopperman, R., Matthews, S., Pajoohesh, H.: Partial metric spaces. Am. Math. Mon. 116 (2009), 708-718. | DOI | MR | JFM

[10] Ćirić, L., Samet, B., Aydi, H., Vetro, C.: Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 218 (2011), 2398-2406. | DOI | MR | JFM

[11] Haghi, R. H., Rezapour, S., Shahzad, N.: Be careful on partial metric fixed point results. Topology Appl. 160 (2013), 450-454. | DOI | MR | JFM

[12] Jungck, G.: Compatible mappings and common fixed points. Int. J. Math. Math. Sci. 9 (1986), 771-779. | DOI | MR | JFM

[13] Kaneko, H., Sessa, S.: Fixed point theorems for compatible multi-valued and single-valued mappings. Int. J. Math. Math. Sci. 12 (1989), 257-262. | DOI | MR | JFM

[14] Kessy, J., Kumar, S., Kakiko, G.: Fixed points for hybrid pair of compatible mappings in partial metric spaces. Adv. Fixed Point Theory 7 (2017), 489-499. | MR

[15] Kubiak, T.: Fixed point theorems for contractive type multivalued mappings. Math. Jap. 30 (1985), 89-101. | MR | JFM

[16] Matthews, S. G.: Metric Domains for Completeness: PhD Thesis. University of Warwick, Warwick (1985) .

[17] Matthews, S. G.: Partial metric topology. Papers on General Topology and Applications Annals of the New York Academy of Sciences 728. New York Academy of Sciences, New York (1994), 183-197. | DOI | MR | JFM

[18] Murthy, P. P., Chang, S. S., Cho, Y. J., Sharma, B. K.: Compatible mappings of type $(A)$ and common fixed point theorems. Kyungpook Math. J. 32 (1992), 203-216 \99999MR99999 1203935 . | MR | JFM

[19] S. B. Nadler, Jr.: Multi-valued contraction mappings. Pac. J. Math. 30 (1969), 475-488 \99999DOI99999 10.2140/pjm.1969.30.475 . | MR | JFM

[20] Pathak, H. K.: Fixed point theorems for weak compatible multi-valued and single-valued mappings. Acta Math. Hung. 67 (1995), 69-78 \99999DOI99999 10.1007/BF01874520 . | MR | JFM

[21] Pathak, H. K., Khan, M. S.: A comparison of various types of compatible maps and common fixed points. Indian J. Pure Appl. Math. 28 (1997), 477-485. | MR | JFM

[22] Sessa, S.: On a weak commutativity condition of mappings in fixed point considerations. Publ. Inst. Math., Nouv. Sér. 32 (1982), 149-153. | MR | JFM

[23] Smithson, R. E.: Fixed points for contractive multifunctions. Proc. Am. Math. Soc. 27 (1971), 192-194 \99999DOI99999 10.1090/S0002-9939-1971-0267564-4 . | MR | JFM

[24] Vetro, C., Vetro, F.: Common fixed points of mappings satisfying implicit relations in partial metric spaces. J. Nonlinear Sci. Appl. 6 (2013), 152-161. | DOI | MR | JFM

Cité par Sources :