Keywords: discontinuous piecewise differential system; continuous piecewise differential system; first integral; non-algebraic limit cycle; linear system; quadratic center
@article{10_21136_MB_2022_0181_21,
author = {Berbache, Aziza},
title = {On limit cycles of piecewise differential systems formed by arbitrary linear systems and a class of quadratic systems},
journal = {Mathematica Bohemica},
pages = {617--629},
year = {2023},
volume = {148},
number = {4},
doi = {10.21136/MB.2022.0181-21},
mrnumber = {4673841},
zbl = {07790607},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0181-21/}
}
TY - JOUR AU - Berbache, Aziza TI - On limit cycles of piecewise differential systems formed by arbitrary linear systems and a class of quadratic systems JO - Mathematica Bohemica PY - 2023 SP - 617 EP - 629 VL - 148 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0181-21/ DO - 10.21136/MB.2022.0181-21 LA - en ID - 10_21136_MB_2022_0181_21 ER -
%0 Journal Article %A Berbache, Aziza %T On limit cycles of piecewise differential systems formed by arbitrary linear systems and a class of quadratic systems %J Mathematica Bohemica %D 2023 %P 617-629 %V 148 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0181-21/ %R 10.21136/MB.2022.0181-21 %G en %F 10_21136_MB_2022_0181_21
Berbache, Aziza. On limit cycles of piecewise differential systems formed by arbitrary linear systems and a class of quadratic systems. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 617-629. doi: 10.21136/MB.2022.0181-21
[1] Artés, J. C., Llibre, J., Medrado, J. C., Teixeira, M. A.: Piecewise linear differential systems with two real saddles. Math. Comput. Simul. 95 (2014), 13-22. | DOI | MR | JFM
[2] Berbache, A.: Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces. Sib. \`Electron. Mat. Izv. 17 (2020), 1488-1515. | DOI | MR | JFM
[3] Berbache, A.: Two explicit non-algebraic crossing limit cycles for a family of piecewise linear systems. Mem. Differ. Equ. Math. Phys. 83 (2021), 13-29. | MR | JFM
[4] Chen, X., Du, Z.: Limit cycles bifurcate from centers of discontinuous quadratic systems. Comput. Math. Appl. 59 (2010), 3836-3848. | DOI | MR | JFM
[5] Braga, D. de Carvalho, Mello, L. F.: Limit cycles in a family of discontinuous piecewise linear differential systems with two zones in the plane. Nonlinear Dyn. 73 (2013), 1283-1288. | DOI | MR | JFM
[6] Bernardo, M. di, Budd, C. J., Champneys, A. R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Appled Mathematical Sciences 163. Springer, London (2008). | DOI | MR | JFM
[7] Filippov, A. F.: Differential Equations with Discontinuous Right-Hand Sides. Mathematics and Its Applications: Soviet Series 18. Kluwer Academic, Dordrecht (1988). | DOI | MR | JFM
[8] Freire, E., Ponce, E., Rodrigo, F., Torres, F.: Bifurcation sets of continuous piecewise linear systems with two zones. Int. J. Bifurcation Chaos Appl. Sci. Eng. 8 (1998), 2073-2097. | DOI | MR | JFM
[9] Freire, E., Ponce, E., Torres, F.: Canonical discontinuous planar piecewise linear systems. SIAM J. Appl. Dyn. Syst. 11 (2012), 181-211. | DOI | MR | JFM
[10] Hilbert, D.: Mathematical problems. Bull. Am. Math. Soc., New Ser. 37 (2000), 407-436. | DOI | MR | JFM
[11] Huan, S.-M., Yang, X.-S.: Existence of limit cycles in general planar piecewise linear systems of saddle-saddle dynamics. Nonlinear Anal., Theory Methods Appl., Ser. A 92 (2013), 82-95. | DOI | MR | JFM
[12] Huan, S.-M., Yang, X.-S.: On the number of limit cycles in general planar piecewise linear systems of node-node types. J. Math. Anal. Appl. 411 (2014), 340-353. | DOI | MR | JFM
[13] Li, L.: Three crossing limit cycles in planar piecewise linear systems with saddle-focus type. Electron. J. Qual. Theory Differ. Equ. 2014 (2014), Article ID 70, 14 pages. | DOI | MR | JFM
[14] Llibre, J., Mereu, A. C.: Limit cycles for discontinuous quadratic differential systems with two zones. J. Math. Anal. Appl. 413 (2014), 763-775. | DOI | MR | JFM
[15] Llibre, J., Ordóñez, M., Ponce, E.: On the existence and uniqueness of limit cycles in planar continuous piecewise linear systems without symmetry. Nonlinear Anal., Real World Appl. 14 (2013), 2002-2012. | DOI | MR | JFM
[16] Llibre, J., Ponce, E.: Three nested limit cycles in discontinuous piecewise linear differential systems with two zones. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 19 (2012), 325-335. | MR | JFM
[17] Lum, R., Chua, L. O.: Global properties of continuous piecewise linear vector fields. I: Simplest case in $R^2$. Int. J. Circuit Theory Appl. 19 (1991), 251-307. | DOI | JFM
[18] Lum, R., Chua, L. O.: Global properties of continuous piecewise linear vector fields. II: Simplest symmetric case in $R^2$. Int. J. Circuit Theory Appl. 20 (1992), 9-46. | DOI | JFM
[19] Xiong, Y.: Limit cycles bifurcations by perturbing piecewise smooth Hamiltonian systems with multiple parameters. J. Math. Anal. Appl. 421 (2015), 260-275. | DOI | MR | JFM
Cité par Sources :