Faber polynomial coefficient estimates of bi-univalent functions connected with the $q$-convolution
Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 49-64
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce a new class of bi-univalent functions defined in the open unit disc and connected with a $q$-convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions and we obtain an estimation for the Fekete-Szegö problem for this class.
We introduce a new class of bi-univalent functions defined in the open unit disc and connected with a $q$-convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions and we obtain an estimation for the Fekete-Szegö problem for this class.
DOI : 10.21136/MB.2022.0173-20
Classification : 05A30, 11B65, 30C45, 47B38
Keywords: Faber polynomial; bi-univalent function; convolution; $q$-derivative operator
@article{10_21136_MB_2022_0173_20,
     author = {El-Deeb, Sheza M. and Bulut, Serap},
     title = {Faber polynomial coefficient estimates of bi-univalent functions connected with the $q$-convolution},
     journal = {Mathematica Bohemica},
     pages = {49--64},
     year = {2023},
     volume = {148},
     number = {1},
     doi = {10.21136/MB.2022.0173-20},
     mrnumber = {4536309},
     zbl = {07655812},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0173-20/}
}
TY  - JOUR
AU  - El-Deeb, Sheza M.
AU  - Bulut, Serap
TI  - Faber polynomial coefficient estimates of bi-univalent functions connected with the $q$-convolution
JO  - Mathematica Bohemica
PY  - 2023
SP  - 49
EP  - 64
VL  - 148
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0173-20/
DO  - 10.21136/MB.2022.0173-20
LA  - en
ID  - 10_21136_MB_2022_0173_20
ER  - 
%0 Journal Article
%A El-Deeb, Sheza M.
%A Bulut, Serap
%T Faber polynomial coefficient estimates of bi-univalent functions connected with the $q$-convolution
%J Mathematica Bohemica
%D 2023
%P 49-64
%V 148
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0173-20/
%R 10.21136/MB.2022.0173-20
%G en
%F 10_21136_MB_2022_0173_20
El-Deeb, Sheza M.; Bulut, Serap. Faber polynomial coefficient estimates of bi-univalent functions connected with the $q$-convolution. Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 49-64. doi: 10.21136/MB.2022.0173-20

[1] Risha, M. H. Abu, Annaby, M. H., Ismail, M. E. H., Mansour, Z. S.: Linear $q$-difference equations. Z. Anal. Anwend. 26 (2007), 481-494. | DOI | MR | JFM

[2] Aldweby, H., Darus, M.: On a subclass of bi-univalent functions associated with the $q$-derivative operator. J. Math. Comput. Sci., JMCS 19 (2019), 58-64. | DOI

[3] Arif, M., Haq, M. Ul, Liu, J.-L.: A subfamily of univalent functions associated with $q$-analogue of Noor integral operator. J. Funct. Spaces 2018 (2018), Article ID 3818915, 5 pages. | DOI | MR | JFM

[4] Brannan, D. A., (eds.), J. Clunie: Aspects of Contemporary Complex Analysis. Academic Press, London (1980). | MR | JFM

[5] Brannan, D. A., Clunie, J., Kirwan, W. E.: Coefficient estimates for a class of star-like functions. Can. J. Math. 22 (1970), 476-485. | DOI | MR | JFM

[6] Brannan, D. A., Taha, T. S.: On some classes of bi-univalent functions. Stud. Univ. Babeş-Bolyai, Math. 31 (1986), 70-77. | MR | JFM

[7] Bulboacă, T.: Differential Subordinations and Superordinations: Recent Results. House of Scientific Book Publications, Cluj-Napoca (2005).

[8] Bulut, S.: Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions. Filomat 30 (2016), 1567-1575. | DOI | MR | JFM

[9] Çağlar, M., Deniz, E.: Initial coefficients for a subclass of bi-univalent functions defined by Sălăgean differential operator. Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 66 (2017), 85-91. | DOI | MR | JFM

[10] Çağlar, M., Orhan, H., Yağmur, N.: Coefficient bounds for new subclasses of bi-univalent functions. Filomat 27 (2013), 1165-1171. | DOI | MR | JFM

[11] Duren, P. L.: Univalent Functions. Grundlehren der mathematischen Wissenschaften 259. Springer, New York (1983). | MR | JFM

[12] El-Deeb, S. M.: Maclaurin coefficient estimates for new subclasses of bi-univalent functions connected with a $q$-analogue of Bessel function. Abstr. Appl. Anal. 2020 (2020), Article ID 8368951, 7 pages. | DOI | MR | JFM

[13] El-Deeb, S. M., Bulboacă, T.: Differential sandwich-type results for symmetric functions connected with a $q$-analog integral operator. Mathematics 7 (2019), Article ID 1185, 17 pages. | DOI

[14] El-Deeb, S. M., Bulboacă, T.: Fekete-Szegő inequalities for certain class of analytic functions connected with $q$-analogue of Bessel function. J. Egypt. Math. Soc. 27 (2019), Article ID 42, 11 pages. | DOI | MR | JFM

[15] El-Deeb, S. M., Bulboacă, T.: Differential sandwich-type results for symmetric functions associated with Pascal distribution series. J. Contemp. Math. Anal., Armen. Acad. Sci. 56 (2021), 214-224. | DOI | MR | JFM

[16] El-Deeb, S. M., Bulboacă, T., El-Matary, B. M.: Maclaurin coefficient estimates of bi-univalent functions connected with the $q$-derivative. Mathematics 8 (2020), Article ID 418, 14 pages. | DOI

[17] Elhaddad, S., Darus, M.: Coefficient estimates for a subclass of bi-univalent functions defined by $q$-derivative operator. Mathematics 8 (2020), Article ID 306, 14 pages. | DOI

[18] Faber, G.: Über polynomische Entwickelungen. Math. Ann. 57 (1903), 389-408 \hbox{German} \99999JFM99999 34.0430.01. | DOI | MR

[19] Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications 35. Cambridge University Press, Cambridge (1990). | DOI | MR | JFM

[20] Jackson, F. H.: On $q$-functions and a certain difference operator. Trans. Royal Soc. Edinburgh 46 (1909), 253-281. | DOI

[21] Jackson, F. H.: On $q$-definite integrals. Quart. J. 41 (1910), 193-203 \99999JFM99999 41.0317.04.

[22] Kamble, P. N., Shrigan, M. G.: Coefficient estimates for a subclass of bi-univalent functions defined by Sălăgean type $q$-calculus operator. Kyungpook Math. J. 58 (2018), 677-688. | DOI | MR | JFM

[23] Lewin, M.: On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 18 (1967), 63-68. | DOI | MR | JFM

[24] Miller, S. S., Mocanu, P. T.: Differential Subordinations: Theory and Applications. Pure and Applied Mathematics 225. Marcel Dekker, New York (2000). | DOI | MR | JFM

[25] Naeem, M., Khan, S., Sakar, F. M.: Faber polynomial coefficients estimates of bi-univalent functions. Int. J. Maps Math. 3 (2020), 57-67. | MR

[26] Netanyahu, E.: The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $\vert z\vert<1$. Arch. Ration. Mech. Anal. 32 (1969), 100-112. | DOI | MR | JFM

[27] Porwal, S.: An application of a Poisson distribution series on certain analytic functions. J. Complex Anal. 2014 (2014), Article ID 984135, 3 pages. | DOI | MR | JFM

[28] Prajapat, J. K.: Subordination and superordination preserving properties for generalized multiplier transformation operator. Math. Comput. Modelling 55 (2012), 1456-1465. | DOI | MR | JFM

[29] Sakar, F. M., Naeem, M., Khan, S., Hussain, S.: Hankel determinant for class of analytic functions involving $q$-derivative operator. J. Adv. Math. Stud. 14 (2021), 265-278. | MR | JFM

[30] Srivastava, H. M.: Certain $q$-polynomial expansions for functions of several variables. IMA J. Appl. Math. 30 (1983), 315-323. | DOI | MR | JFM

[31] Srivastava, H. M.: Certain $q$-polynomial expansions for functions of several variables. II. IMA J. Appl. Math. 33 (1984), 205-209. | DOI | MR | JFM

[32] Srivastava, H. M.: Univalent functions, fractional calculus, and associated generalized hypergeometric functions. Univalent Functions, Fractional Calculus, and Their Applications John Willey & Sons, New York (1989), 329-354. | MR | JFM

[33] Srivastava, H. M.: Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol., Trans. A, Sci. 44 (2020), 327-344. | DOI | MR

[34] Srivastava, H. M., Bulut, S., Çağlar, M., Yağmur, N.: Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat 27 (2013), 831-842. | DOI | MR | JFM

[35] Srivastava, H. M., Eker, S. S., Ali, R. M.: Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 29 (2015), 1839-1845. | DOI | MR | JFM

[36] Srivastava, H. M., Eker, S. S., Hamidi, S. G., Jahangiri, J. M.: Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bull. Iran. Math. Soc. 44 (2018), 149-157. | DOI | MR | JFM

[37] Srivastava, H. M., El-Deeb, S. M.: A certain class of analytic functions of complex order with a $q$-analogue of integral operators. Miskolc Math. Notes 21 (2020), 417-433. | DOI | MR | JFM

[38] Srivastava, H. M., El-Deeb, S. M.: The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the $q$-convolution. AIMS Math. 5 (2020), 7087-7106. | DOI | MR

[39] Srivastava, H. M., Karlsson, P. W.: Multiple Gaussian Hypergeometric Series. Ellis Horwood Series in Mathematics and Its Applications. John Wiley & Sons, New York (1985). | MR | JFM

[40] Srivastava, H. M., Khan, S., Ahmad, Q. Z., Khan, N., Hussain, S.: The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain $q$-integral operator. Stud. Univ. Babeş-Bolyai, Math. 63 (2018), 419-436. | DOI | MR | JFM

[41] Srivastava, H. M., Mishra, A. K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 23 (2010), 1188-1192. | DOI | MR | JFM

[42] Srivastava, H. M., Motamednezhad, A., Adegani, E. A.: Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 8 (2020), Article ID 172, 12 pages. | DOI

[43] Srivastava, H. M., Murugusundaramoorthy, G., El-Deeb, S. M.: Faber polynomial coefficient estimates of bi-close-convex functions connected with the Borel distribution of the Mittag-Leffler type. J. Nonlinear Var. Anal. 5 (2021), 103-118. | DOI | JFM

[44] Srivastava, H. M., Sakar, F. M., Güney, H. O.: Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination. Filomat 32 (2018), 1313-1322. | DOI | MR | JFM

Cité par Sources :