Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_21136_MB_2022_0173_20, author = {El-Deeb, Sheza M. and Bulut, Serap}, title = {Faber polynomial coefficient estimates of bi-univalent functions connected with the $q$-convolution}, journal = {Mathematica Bohemica}, pages = {49--64}, publisher = {mathdoc}, volume = {148}, number = {1}, year = {2023}, doi = {10.21136/MB.2022.0173-20}, mrnumber = {4536309}, zbl = {07655812}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0173-20/} }
TY - JOUR AU - El-Deeb, Sheza M. AU - Bulut, Serap TI - Faber polynomial coefficient estimates of bi-univalent functions connected with the $q$-convolution JO - Mathematica Bohemica PY - 2023 SP - 49 EP - 64 VL - 148 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0173-20/ DO - 10.21136/MB.2022.0173-20 LA - en ID - 10_21136_MB_2022_0173_20 ER -
%0 Journal Article %A El-Deeb, Sheza M. %A Bulut, Serap %T Faber polynomial coefficient estimates of bi-univalent functions connected with the $q$-convolution %J Mathematica Bohemica %D 2023 %P 49-64 %V 148 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0173-20/ %R 10.21136/MB.2022.0173-20 %G en %F 10_21136_MB_2022_0173_20
El-Deeb, Sheza M.; Bulut, Serap. Faber polynomial coefficient estimates of bi-univalent functions connected with the $q$-convolution. Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 49-64. doi : 10.21136/MB.2022.0173-20. http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0173-20/
Cité par Sources :