Keywords: boundedness; nonlinear; differential equation of third order; integral inequality
@article{10_21136_MB_2022_0166_21,
author = {Adams, Daniel O. and Omeike, Mathew O. and Osinuga, Idowu A. and Badmus, Biodun S.},
title = {Boundedness criteria for a class of second order nonlinear differential equations with delay},
journal = {Mathematica Bohemica},
pages = {303--327},
year = {2023},
volume = {148},
number = {3},
doi = {10.21136/MB.2022.0166-21},
mrnumber = {4628615},
zbl = {07729579},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0166-21/}
}
TY - JOUR AU - Adams, Daniel O. AU - Omeike, Mathew O. AU - Osinuga, Idowu A. AU - Badmus, Biodun S. TI - Boundedness criteria for a class of second order nonlinear differential equations with delay JO - Mathematica Bohemica PY - 2023 SP - 303 EP - 327 VL - 148 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0166-21/ DO - 10.21136/MB.2022.0166-21 LA - en ID - 10_21136_MB_2022_0166_21 ER -
%0 Journal Article %A Adams, Daniel O. %A Omeike, Mathew O. %A Osinuga, Idowu A. %A Badmus, Biodun S. %T Boundedness criteria for a class of second order nonlinear differential equations with delay %J Mathematica Bohemica %D 2023 %P 303-327 %V 148 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0166-21/ %R 10.21136/MB.2022.0166-21 %G en %F 10_21136_MB_2022_0166_21
Adams, Daniel O.; Omeike, Mathew O.; Osinuga, Idowu A.; Badmus, Biodun S. Boundedness criteria for a class of second order nonlinear differential equations with delay. Mathematica Bohemica, Tome 148 (2023) no. 3, pp. 303-327. doi: 10.21136/MB.2022.0166-21
[1] Adams, D. O., Olutimo, A. L.: Some results on the boundedness of solutions of a certain third order non-autonomous differential equations with delay. Adv. Stud. Contemp. Math., Kyungshang 29 (2019), 237-249. | JFM
[2] Ademola, A. T., Moyo, S., Ogundare, B. S., Ogundiran, M. O., Adesina, O. A.: New conditions on the solutions of a certain third order delay differential equations with multiple deviating arguments. Differ. Uravn. Protsessy Upr. 2019 (2019), 33-69. | MR | JFM
[3] Afuwape, A. U., Omeike, M. O.: On the stability and boundedness of solutions of a kind of third order delay differential equations. Appl. Math. Comput. 200 (2008), 444-451. | DOI | MR | JFM
[4] Antosiewicz, H. A.: On nonlinear differential equations of the second order with integrable forcing term. J. Lond. Math. Soc. 30 (1955), 64-67. | DOI | MR | JFM
[5] Athanassov, Z. S.: Boundedness criteria for solutions of certain second order nonlinear differential equations. J. Math. Anal. Appl. 123 (1987), 461-479. | DOI | MR | JFM
[6] Bellman, R., Cooke, K. L.: Differential-Difference Equations. Mathematics in Science and Engineering 6. Academic Press, New York (1963). | MR | JFM
[7] Bihari, I.: Researches of the boundedness and stability of the solutions of non-linear differential equations. Acta Math. Acad. Sci. Hung. 8 (1957), 261-278. | DOI | MR | JFM
[8] Burton, T. A.: The generalized Lienard equation. J. SIAM Control, Ser. A 3 (1965), 223-230. | DOI | MR | JFM
[9] Burton, T. A.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations. Mathematics in Science and Engineering 178. Academic Press, Orlando (1985). | DOI | MR | JFM
[10] Burton, T. A., Grimmer, R. C.: Stability properties of $(r(t)u^\prime)^\prime + a(t)f(u)g(u^\prime) = 0$. Monastsh. Math. 74 (1970), 211-222. | DOI | MR | JFM
[11] Burton, T. A., Hatvani, L.: Stability theorems for nonautonomous functional differential equations by Liapunov functionals. Tohoku Math. J., II. Ser. 41 (1989), 65-104. | DOI | MR | JFM
[12] Burton, T. A., Hering, R. H.: Liapunov theory for functional differential equations. Rocky Mt. J. Math. 24 (1994), 3-17. | DOI | MR | JFM
[13] Burton, T. A., Makay, G.: Asymptotic stability for functional differential equations. Acta Math. Hung. 65 (1994), 243-251. | DOI | MR | JFM
[14] Driver, R. D.: Ordinary and Delay Differential Equations. Applied Mathematical Sciences 20. Springer, New York (1977). | DOI | MR | JFM
[15] Dvořáková, S.: The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations: Doctoral Thesis. Brno University of Technology, Brno (2011).
[16] \`El'sgol'ts, L. \`E.: Introduction to the Theory of Differential Equations with Deviating Arguments. McLaughin Holden-Day, San Francisco (1966). | MR | JFM
[17] Èl'sgol'ts, L. È., Norkin, S. B.: Introduction to the Theory and Application of Differential Equations with Deviating Arguments. Mathematics in Science and Engineering 105. Academic Press, New York (1973). | DOI | MR | JFM
[18] Gabsi, H., Ardjouni, A., Djoudi, A.: New technique in asymptotic stability for third-order nonlinear delay differential equations. Math. Eng. Sci. Aerospace 9 (2018), 315-330. | MR
[19] Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Mathematics and its Applications 74. Kluwer Academic, Dordrecht (1992). | DOI | MR | JFM
[20] Graef, J. R., Spikes, P. W.: Asymptotic behavior of solutions of a second order nonlinear differential equation. J. Differ. Equations 17 (1975), 461-476. | DOI | MR | JFM
[21] Graef, J. R., Spikes, P. W.: Continuability, boundedness, and convergence to zero of solutions of a perturbed nonlinear ordinary differential equation. Czech. Math. J. 45 (1995), 663-683. | DOI | MR | JFM
[22] Hale, J. K.: Theory of Functional Differential Equations. Applied Mathematical Sciences 3. Springer, New York (1977). | DOI | MR | JFM
[23] Hildebrandt, T. H.: Introduction to the Theory of Integration. Pure and Applied Mathematics 13. Academic Press, New York (1963). | MR | JFM
[24] Jones, G. S.: Fundamental inequalities for discrete and discontinuous functional equations. J. Soc. Ind. Appl. Math. 12 (1964), 43-57. | DOI | MR | JFM
[25] Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional Differential Equations. Mathematics and its Applications 463. Klumer Academic, Dordrecht (1999). | DOI | MR | JFM
[26] Kolmanovskii, V. B., Nosov, V. R.: Stability of Functional Differential Equations. Mathematics in Science and Engineering 180. Academic Press, London (1986). | MR | JFM
[27] Krasovskii, N. N.: Stability of Motion: Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay. Stanford University Press, Stanford (1963). | MR | JFM
[28] Lalli, B. S.: On the boundedness of solutions of certain second-order differential equations. J. Math. Anal. Appl. 25 (1969), 182-188. | DOI | MR
[29] Legatos, G. G.: Contribution to the qualitative theory of ordinary differential equations. Bull. Soc. Math. Grèce, N. Ser. 2 (1961), 1-44 Greek. | MR | JFM
[30] Mahmoud, A. M., Tunç, C.: Asymptotic stability of solutions of a kind of third-order stochastic differential equations with delays. Miskolc Math. Notes 20 (2019), 381-393. | DOI | MR | JFM
[31] V., J. E. Nápoles: A note on the qualitative behaviour of some second order nonlinear differential equations. Divulg. Mat. 10 (2002), 91-99. | MR | JFM
[32] Ogundare, B. S., Ademola, A. T., Ogundiran, M. O., Adesina, O. A.: On the qualitative behaviour of solutions to certain second order nonlinear differential equation with delay. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 63 (2017), 333-351. | DOI | MR | JFM
[33] Olehnik, S. N.: The boundedness of solutions of a second-order differential equation. Differ. Equations 9 (1973), 1530-1534. | MR | JFM
[34] Olutimo, A. L., Adams, D. O.: On the stability and boundedness of solutions of certain non-autonomous delay differential equation of third order. Appl. Math. 7 (2016), 457-467. | DOI
[35] Omeike, M. O.: New results on the stability of solution of some non-autonomous delay differential equations of the third order. Differ. Uravn. Protsessy Upr. 2010 (2010), 18-29. | MR | JFM
[36] Omeike, M. O., Adeyanju, A. A., Adams, D. O.: Stability and boundedness of solutions of certain vector delay differential equations. J. Niger. Math. Soc. 37 (2018), 77-87. | MR | JFM
[37] Opial, Z.: Sur les solutions de l'equation différentielle $x^{\prime\prime} + h(x)x^\prime + f(x) = e(t)$. Ann. Pol. Math. 8 (1960), 71-74 French. | DOI | MR | JFM
[38] Peng, Q.: Qualitative analysis for a class of second-order nonlinear system with delay. Appl. Math. Mech., Engl. Ed. 22 (2001), 842-845. | DOI | MR | JFM
[39] Rao, M. Rama Mohana: Ordinary Differential Equations: Theory and Applications. Affiliated East-West Press, New Delhi (1980). | MR | JFM
[40] Remili, M., Beldjerd, D.: A boundedness and stability results for a kind of third order delay differential equations. Appl. Appl. Math. 10 (2015), 772-782. | MR | JFM
[41] Remili, M., Beldjerd, D.: Stability and ultimate boundedness of solutions of some third order differential equations with delay. J. Assoc. Arab Universit. Basic Appl. Sci. 23 (2017), 90-95. | DOI | MR
[42] Tejumola, H. O.: Boundedness criteria for solutions of some second-order differential equations. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 50 (1971), 432-437. | MR | JFM
[43] Tunç, C.: On the stability of solutions for non-autonomous delay differential equations of third-order. Iran. J. Sci. Technol., Trans. A, Sci. 32 (2008), 261-273. | MR | JFM
[44] Tunç, C.: On the stability and boundedness of solutions of nonlinear third order differential equations with delay. Filomat 24 (2010), 1-10. | DOI | MR | JFM
[45] Tunç, C.: On the qualitative behaviours of solutions to a kind of nonlinear third order differential equations with retarded argument. Ital. J. Pure Appl. Math. 28 (2011), 273-284. | MR | JFM
[46] Tunç, C.: Stability and boundedness of solutions of non-autonomous differential equations of second order. J. Comput. Anal. Appl. 13 (2011), 1067-1074. | MR | JFM
[47] Tunç, C.: Stability to vector Liénard equation with constant deviating argument. Nonlinear Dyn. 73 (2013), 1245-1251. | DOI | MR | JFM
[48] Tunç, C.: A note on the stability and boundedness of non-autonomous differential equations of second order with a variable deviating arguments. Afrika Math. 25 (2014), 417-425. | DOI | MR | JFM
[49] Tunç, C.: Global stability and boundedness of solutions to differential equations of third order with multiple delays. Dyn. Syst. Appl. 24 (2015), 467-478. | MR | JFM
[50] Tunç, C.: Stability and boundedness in differential systems of third order with variable delay. Proyecciones 35 (2016), 317-338. | DOI | MR | JFM
[51] Tunç, C.: On the properties of solutions for a system of nonlinear differential equations of second order. Int. J. Math. Comput. Sci. 14 (2019), 519-534. | MR | JFM
[52] Tunç, C., Erdur, S.: New qualitative results for solutions of functional differential equations of second order. Discrete Dyn. Nat. Soc. 2018 (2018), Article ID 3151742, 13 pages. | DOI | MR | JFM
[53] Tunç, C., Tunç, O.: On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order. J. Adv. Research 7 (2016), 165-168. | DOI
[54] Tunç, C., Tunç, O.: A note on the stability and boundedness of solutions to non-linear differential systems of second order. J. Assoc. Arab Universit. Basic Appl. Sci. 24 (2017), 169-175. | DOI
[55] Tunç, C., Tunç, O.: Qualitative analysis for a variable delay system of differential equations of second order. J. Taibah Univ. Sci. 13 (2019), 468-477. | DOI
[56] Willett, D. W., Wong, J. S. W.: The boundedness of solutions of the equation $x^{\prime\prime} +f(x,x^\prime)+ g(x)=0$. SIAM J. Appl. Math. 14 (1966), 1084-1098. | DOI | MR | JFM
[57] Willett, D. W., Wong, J. S. W.: Some properties of the solutions of $(p(t)x^\prime)^\prime + q(t)f(x)=0$. J. Math. Anal. Appl. 23 (1968), 15-24. | DOI | MR | JFM
[58] Wong, J. S. W.: Some properties of solutions of $u^{\prime\prime} + a(t)f(u)g(u^\prime) = 0$. III. SIAM J. Appl. Math. 14 (1966), 209-214. | DOI | MR | JFM
[59] Wong, J. S. W., Burton, T. A.: Some properties of solutions of $u^{\prime\prime} + a(t)f(u)g(u^\prime) = 0$. II. Monatsh. Math. 69 (1965), 368-374. | DOI | MR | JFM
[60] Yao, H., Wang, J.: Globally asymptotic stability of a kind of third-order delay differential system. Int. J. Nonlinear Sci. 10 (2010), 82-87. | MR | JFM
[61] Yoshizawa, T.: Stability Theory by Lyapunov's Second Method. Publications of the Mathematical Society of Japan 9. Mathematical Society of Japan, Tokyo (1966). | MR | JFM
[62] Zarghamee, M. S., Mehri, B.: A note on boundedness of solutions of certain second-order differential equations. J. Math. Anal. Appl. 31 (1970), 504-508. | DOI | MR | JFM
[63] Zhang, B.: On the retarded Liénard equation. Proc. Am. Math. Soc. 115 (1992), 779-785. | DOI | MR | JFM
[64] Zhang, B.: Necessary and sufficient conditions for boundedness and oscillation in the retarded Liénard equation. J. Math. Anal. Appl. 200 (1996), 453-473. | DOI | MR | JFM
Cité par Sources :