Boundedness criteria for a class of second order nonlinear differential equations with delay
Mathematica Bohemica, Tome 148 (2023) no. 3, pp. 303-327.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider certain class of second order nonlinear nonautonomous delay differential equations of the form $$ a(t)x^{\prime \prime } + b(t)g(x,x^\prime ) + c(t)h(x(t-r))m(x^\prime ) = p(t,x,x^\prime ) $$ and $$ (a(t)x^\prime )^\prime + b(t)g(x,x^\prime ) + c(t)h(x(t-r))m(x^\prime ) = p(t,x,x^\prime ), $$ where $a$, $b$, $c$, $g$, $h$, $m$ and $p$ are real valued functions which depend at most on the arguments displayed explicitly and $r$ is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski\v ı functional to establish our results. This work extends and improve on some results in the literature.
DOI : 10.21136/MB.2022.0166-21
Classification : 34C11, 34C12, 34K12
Keywords: boundedness; nonlinear; differential equation of third order; integral inequality
@article{10_21136_MB_2022_0166_21,
     author = {Adams, Daniel O. and Omeike, Mathew O. and Osinuga, Idowu A. and Badmus, Biodun S.},
     title = {Boundedness criteria for a class of second order nonlinear differential equations with delay},
     journal = {Mathematica Bohemica},
     pages = {303--327},
     publisher = {mathdoc},
     volume = {148},
     number = {3},
     year = {2023},
     doi = {10.21136/MB.2022.0166-21},
     mrnumber = {4628615},
     zbl = {07729579},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0166-21/}
}
TY  - JOUR
AU  - Adams, Daniel O.
AU  - Omeike, Mathew O.
AU  - Osinuga, Idowu A.
AU  - Badmus, Biodun S.
TI  - Boundedness criteria for a class of second order nonlinear differential equations with delay
JO  - Mathematica Bohemica
PY  - 2023
SP  - 303
EP  - 327
VL  - 148
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0166-21/
DO  - 10.21136/MB.2022.0166-21
LA  - en
ID  - 10_21136_MB_2022_0166_21
ER  - 
%0 Journal Article
%A Adams, Daniel O.
%A Omeike, Mathew O.
%A Osinuga, Idowu A.
%A Badmus, Biodun S.
%T Boundedness criteria for a class of second order nonlinear differential equations with delay
%J Mathematica Bohemica
%D 2023
%P 303-327
%V 148
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0166-21/
%R 10.21136/MB.2022.0166-21
%G en
%F 10_21136_MB_2022_0166_21
Adams, Daniel O.; Omeike, Mathew O.; Osinuga, Idowu A.; Badmus, Biodun S. Boundedness criteria for a class of second order nonlinear differential equations with delay. Mathematica Bohemica, Tome 148 (2023) no. 3, pp. 303-327. doi : 10.21136/MB.2022.0166-21. http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0166-21/

Cité par Sources :