Boundedness criteria for a class of second order nonlinear differential equations with delay
Mathematica Bohemica, Tome 148 (2023) no. 3, pp. 303-327
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider certain class of second order nonlinear nonautonomous delay differential equations of the form $$ a(t)x^{\prime \prime } + b(t)g(x,x^\prime ) + c(t)h(x(t-r))m(x^\prime ) = p(t,x,x^\prime ) $$ and $$ (a(t)x^\prime )^\prime + b(t)g(x,x^\prime ) + c(t)h(x(t-r))m(x^\prime ) = p(t,x,x^\prime ), $$ where $a$, $b$, $c$, $g$, $h$, $m$ and $p$ are real valued functions which depend at most on the arguments displayed explicitly and $r$ is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski\v ı functional to establish our results. This work extends and improve on some results in the literature.
We consider certain class of second order nonlinear nonautonomous delay differential equations of the form $$ a(t)x^{\prime \prime } + b(t)g(x,x^\prime ) + c(t)h(x(t-r))m(x^\prime ) = p(t,x,x^\prime ) $$ and $$ (a(t)x^\prime )^\prime + b(t)g(x,x^\prime ) + c(t)h(x(t-r))m(x^\prime ) = p(t,x,x^\prime ), $$ where $a$, $b$, $c$, $g$, $h$, $m$ and $p$ are real valued functions which depend at most on the arguments displayed explicitly and $r$ is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski\v ı functional to establish our results. This work extends and improve on some results in the literature.
DOI : 10.21136/MB.2022.0166-21
Classification : 34C11, 34C12, 34K12
Keywords: boundedness; nonlinear; differential equation of third order; integral inequality
@article{10_21136_MB_2022_0166_21,
     author = {Adams, Daniel O. and Omeike, Mathew O. and Osinuga, Idowu A. and Badmus, Biodun S.},
     title = {Boundedness criteria for a class of second order nonlinear differential equations with delay},
     journal = {Mathematica Bohemica},
     pages = {303--327},
     year = {2023},
     volume = {148},
     number = {3},
     doi = {10.21136/MB.2022.0166-21},
     mrnumber = {4628615},
     zbl = {07729579},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0166-21/}
}
TY  - JOUR
AU  - Adams, Daniel O.
AU  - Omeike, Mathew O.
AU  - Osinuga, Idowu A.
AU  - Badmus, Biodun S.
TI  - Boundedness criteria for a class of second order nonlinear differential equations with delay
JO  - Mathematica Bohemica
PY  - 2023
SP  - 303
EP  - 327
VL  - 148
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0166-21/
DO  - 10.21136/MB.2022.0166-21
LA  - en
ID  - 10_21136_MB_2022_0166_21
ER  - 
%0 Journal Article
%A Adams, Daniel O.
%A Omeike, Mathew O.
%A Osinuga, Idowu A.
%A Badmus, Biodun S.
%T Boundedness criteria for a class of second order nonlinear differential equations with delay
%J Mathematica Bohemica
%D 2023
%P 303-327
%V 148
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0166-21/
%R 10.21136/MB.2022.0166-21
%G en
%F 10_21136_MB_2022_0166_21
Adams, Daniel O.; Omeike, Mathew O.; Osinuga, Idowu A.; Badmus, Biodun S. Boundedness criteria for a class of second order nonlinear differential equations with delay. Mathematica Bohemica, Tome 148 (2023) no. 3, pp. 303-327. doi: 10.21136/MB.2022.0166-21

[1] Adams, D. O., Olutimo, A. L.: Some results on the boundedness of solutions of a certain third order non-autonomous differential equations with delay. Adv. Stud. Contemp. Math., Kyungshang 29 (2019), 237-249. | JFM

[2] Ademola, A. T., Moyo, S., Ogundare, B. S., Ogundiran, M. O., Adesina, O. A.: New conditions on the solutions of a certain third order delay differential equations with multiple deviating arguments. Differ. Uravn. Protsessy Upr. 2019 (2019), 33-69. | MR | JFM

[3] Afuwape, A. U., Omeike, M. O.: On the stability and boundedness of solutions of a kind of third order delay differential equations. Appl. Math. Comput. 200 (2008), 444-451. | DOI | MR | JFM

[4] Antosiewicz, H. A.: On nonlinear differential equations of the second order with integrable forcing term. J. Lond. Math. Soc. 30 (1955), 64-67. | DOI | MR | JFM

[5] Athanassov, Z. S.: Boundedness criteria for solutions of certain second order nonlinear differential equations. J. Math. Anal. Appl. 123 (1987), 461-479. | DOI | MR | JFM

[6] Bellman, R., Cooke, K. L.: Differential-Difference Equations. Mathematics in Science and Engineering 6. Academic Press, New York (1963). | MR | JFM

[7] Bihari, I.: Researches of the boundedness and stability of the solutions of non-linear differential equations. Acta Math. Acad. Sci. Hung. 8 (1957), 261-278. | DOI | MR | JFM

[8] Burton, T. A.: The generalized Lienard equation. J. SIAM Control, Ser. A 3 (1965), 223-230. | DOI | MR | JFM

[9] Burton, T. A.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations. Mathematics in Science and Engineering 178. Academic Press, Orlando (1985). | DOI | MR | JFM

[10] Burton, T. A., Grimmer, R. C.: Stability properties of $(r(t)u^\prime)^\prime + a(t)f(u)g(u^\prime) = 0$. Monastsh. Math. 74 (1970), 211-222. | DOI | MR | JFM

[11] Burton, T. A., Hatvani, L.: Stability theorems for nonautonomous functional differential equations by Liapunov functionals. Tohoku Math. J., II. Ser. 41 (1989), 65-104. | DOI | MR | JFM

[12] Burton, T. A., Hering, R. H.: Liapunov theory for functional differential equations. Rocky Mt. J. Math. 24 (1994), 3-17. | DOI | MR | JFM

[13] Burton, T. A., Makay, G.: Asymptotic stability for functional differential equations. Acta Math. Hung. 65 (1994), 243-251. | DOI | MR | JFM

[14] Driver, R. D.: Ordinary and Delay Differential Equations. Applied Mathematical Sciences 20. Springer, New York (1977). | DOI | MR | JFM

[15] Dvořáková, S.: The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations: Doctoral Thesis. Brno University of Technology, Brno (2011).

[16] \`El'sgol'ts, L. \`E.: Introduction to the Theory of Differential Equations with Deviating Arguments. McLaughin Holden-Day, San Francisco (1966). | MR | JFM

[17] Èl'sgol'ts, L. È., Norkin, S. B.: Introduction to the Theory and Application of Differential Equations with Deviating Arguments. Mathematics in Science and Engineering 105. Academic Press, New York (1973). | DOI | MR | JFM

[18] Gabsi, H., Ardjouni, A., Djoudi, A.: New technique in asymptotic stability for third-order nonlinear delay differential equations. Math. Eng. Sci. Aerospace 9 (2018), 315-330. | MR

[19] Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Mathematics and its Applications 74. Kluwer Academic, Dordrecht (1992). | DOI | MR | JFM

[20] Graef, J. R., Spikes, P. W.: Asymptotic behavior of solutions of a second order nonlinear differential equation. J. Differ. Equations 17 (1975), 461-476. | DOI | MR | JFM

[21] Graef, J. R., Spikes, P. W.: Continuability, boundedness, and convergence to zero of solutions of a perturbed nonlinear ordinary differential equation. Czech. Math. J. 45 (1995), 663-683. | DOI | MR | JFM

[22] Hale, J. K.: Theory of Functional Differential Equations. Applied Mathematical Sciences 3. Springer, New York (1977). | DOI | MR | JFM

[23] Hildebrandt, T. H.: Introduction to the Theory of Integration. Pure and Applied Mathematics 13. Academic Press, New York (1963). | MR | JFM

[24] Jones, G. S.: Fundamental inequalities for discrete and discontinuous functional equations. J. Soc. Ind. Appl. Math. 12 (1964), 43-57. | DOI | MR | JFM

[25] Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional Differential Equations. Mathematics and its Applications 463. Klumer Academic, Dordrecht (1999). | DOI | MR | JFM

[26] Kolmanovskii, V. B., Nosov, V. R.: Stability of Functional Differential Equations. Mathematics in Science and Engineering 180. Academic Press, London (1986). | MR | JFM

[27] Krasovskii, N. N.: Stability of Motion: Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay. Stanford University Press, Stanford (1963). | MR | JFM

[28] Lalli, B. S.: On the boundedness of solutions of certain second-order differential equations. J. Math. Anal. Appl. 25 (1969), 182-188. | DOI | MR

[29] Legatos, G. G.: Contribution to the qualitative theory of ordinary differential equations. Bull. Soc. Math. Grèce, N. Ser. 2 (1961), 1-44 Greek. | MR | JFM

[30] Mahmoud, A. M., Tunç, C.: Asymptotic stability of solutions of a kind of third-order stochastic differential equations with delays. Miskolc Math. Notes 20 (2019), 381-393. | DOI | MR | JFM

[31] V., J. E. Nápoles: A note on the qualitative behaviour of some second order nonlinear differential equations. Divulg. Mat. 10 (2002), 91-99. | MR | JFM

[32] Ogundare, B. S., Ademola, A. T., Ogundiran, M. O., Adesina, O. A.: On the qualitative behaviour of solutions to certain second order nonlinear differential equation with delay. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 63 (2017), 333-351. | DOI | MR | JFM

[33] Olehnik, S. N.: The boundedness of solutions of a second-order differential equation. Differ. Equations 9 (1973), 1530-1534. | MR | JFM

[34] Olutimo, A. L., Adams, D. O.: On the stability and boundedness of solutions of certain non-autonomous delay differential equation of third order. Appl. Math. 7 (2016), 457-467. | DOI

[35] Omeike, M. O.: New results on the stability of solution of some non-autonomous delay differential equations of the third order. Differ. Uravn. Protsessy Upr. 2010 (2010), 18-29. | MR | JFM

[36] Omeike, M. O., Adeyanju, A. A., Adams, D. O.: Stability and boundedness of solutions of certain vector delay differential equations. J. Niger. Math. Soc. 37 (2018), 77-87. | MR | JFM

[37] Opial, Z.: Sur les solutions de l'equation différentielle $x^{\prime\prime} + h(x)x^\prime + f(x) = e(t)$. Ann. Pol. Math. 8 (1960), 71-74 French. | DOI | MR | JFM

[38] Peng, Q.: Qualitative analysis for a class of second-order nonlinear system with delay. Appl. Math. Mech., Engl. Ed. 22 (2001), 842-845. | DOI | MR | JFM

[39] Rao, M. Rama Mohana: Ordinary Differential Equations: Theory and Applications. Affiliated East-West Press, New Delhi (1980). | MR | JFM

[40] Remili, M., Beldjerd, D.: A boundedness and stability results for a kind of third order delay differential equations. Appl. Appl. Math. 10 (2015), 772-782. | MR | JFM

[41] Remili, M., Beldjerd, D.: Stability and ultimate boundedness of solutions of some third order differential equations with delay. J. Assoc. Arab Universit. Basic Appl. Sci. 23 (2017), 90-95. | DOI | MR

[42] Tejumola, H. O.: Boundedness criteria for solutions of some second-order differential equations. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 50 (1971), 432-437. | MR | JFM

[43] Tunç, C.: On the stability of solutions for non-autonomous delay differential equations of third-order. Iran. J. Sci. Technol., Trans. A, Sci. 32 (2008), 261-273. | MR | JFM

[44] Tunç, C.: On the stability and boundedness of solutions of nonlinear third order differential equations with delay. Filomat 24 (2010), 1-10. | DOI | MR | JFM

[45] Tunç, C.: On the qualitative behaviours of solutions to a kind of nonlinear third order differential equations with retarded argument. Ital. J. Pure Appl. Math. 28 (2011), 273-284. | MR | JFM

[46] Tunç, C.: Stability and boundedness of solutions of non-autonomous differential equations of second order. J. Comput. Anal. Appl. 13 (2011), 1067-1074. | MR | JFM

[47] Tunç, C.: Stability to vector Liénard equation with constant deviating argument. Nonlinear Dyn. 73 (2013), 1245-1251. | DOI | MR | JFM

[48] Tunç, C.: A note on the stability and boundedness of non-autonomous differential equations of second order with a variable deviating arguments. Afrika Math. 25 (2014), 417-425. | DOI | MR | JFM

[49] Tunç, C.: Global stability and boundedness of solutions to differential equations of third order with multiple delays. Dyn. Syst. Appl. 24 (2015), 467-478. | MR | JFM

[50] Tunç, C.: Stability and boundedness in differential systems of third order with variable delay. Proyecciones 35 (2016), 317-338. | DOI | MR | JFM

[51] Tunç, C.: On the properties of solutions for a system of nonlinear differential equations of second order. Int. J. Math. Comput. Sci. 14 (2019), 519-534. | MR | JFM

[52] Tunç, C., Erdur, S.: New qualitative results for solutions of functional differential equations of second order. Discrete Dyn. Nat. Soc. 2018 (2018), Article ID 3151742, 13 pages. | DOI | MR | JFM

[53] Tunç, C., Tunç, O.: On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order. J. Adv. Research 7 (2016), 165-168. | DOI

[54] Tunç, C., Tunç, O.: A note on the stability and boundedness of solutions to non-linear differential systems of second order. J. Assoc. Arab Universit. Basic Appl. Sci. 24 (2017), 169-175. | DOI

[55] Tunç, C., Tunç, O.: Qualitative analysis for a variable delay system of differential equations of second order. J. Taibah Univ. Sci. 13 (2019), 468-477. | DOI

[56] Willett, D. W., Wong, J. S. W.: The boundedness of solutions of the equation $x^{\prime\prime} +f(x,x^\prime)+ g(x)=0$. SIAM J. Appl. Math. 14 (1966), 1084-1098. | DOI | MR | JFM

[57] Willett, D. W., Wong, J. S. W.: Some properties of the solutions of $(p(t)x^\prime)^\prime + q(t)f(x)=0$. J. Math. Anal. Appl. 23 (1968), 15-24. | DOI | MR | JFM

[58] Wong, J. S. W.: Some properties of solutions of $u^{\prime\prime} + a(t)f(u)g(u^\prime) = 0$. III. SIAM J. Appl. Math. 14 (1966), 209-214. | DOI | MR | JFM

[59] Wong, J. S. W., Burton, T. A.: Some properties of solutions of $u^{\prime\prime} + a(t)f(u)g(u^\prime) = 0$. II. Monatsh. Math. 69 (1965), 368-374. | DOI | MR | JFM

[60] Yao, H., Wang, J.: Globally asymptotic stability of a kind of third-order delay differential system. Int. J. Nonlinear Sci. 10 (2010), 82-87. | MR | JFM

[61] Yoshizawa, T.: Stability Theory by Lyapunov's Second Method. Publications of the Mathematical Society of Japan 9. Mathematical Society of Japan, Tokyo (1966). | MR | JFM

[62] Zarghamee, M. S., Mehri, B.: A note on boundedness of solutions of certain second-order differential equations. J. Math. Anal. Appl. 31 (1970), 504-508. | DOI | MR | JFM

[63] Zhang, B.: On the retarded Liénard equation. Proc. Am. Math. Soc. 115 (1992), 779-785. | DOI | MR | JFM

[64] Zhang, B.: Necessary and sufficient conditions for boundedness and oscillation in the retarded Liénard equation. J. Math. Anal. Appl. 200 (1996), 453-473. | DOI | MR | JFM

Cité par Sources :