Boundedness criteria for a class of second order nonlinear differential equations with delay
Mathematica Bohemica, Tome 148 (2023) no. 3, pp. 303-327
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider certain class of second order nonlinear nonautonomous delay differential equations of the form $$ a(t)x^{\prime \prime } + b(t)g(x,x^\prime ) + c(t)h(x(t-r))m(x^\prime ) = p(t,x,x^\prime ) $$ and $$ (a(t)x^\prime )^\prime + b(t)g(x,x^\prime ) + c(t)h(x(t-r))m(x^\prime ) = p(t,x,x^\prime ), $$ where $a$, $b$, $c$, $g$, $h$, $m$ and $p$ are real valued functions which depend at most on the arguments displayed explicitly and $r$ is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski\v ı functional to establish our results. This work extends and improve on some results in the literature.
DOI :
10.21136/MB.2022.0166-21
Classification :
34C11, 34C12, 34K12
Keywords: boundedness; nonlinear; differential equation of third order; integral inequality
Keywords: boundedness; nonlinear; differential equation of third order; integral inequality
@article{10_21136_MB_2022_0166_21,
author = {Adams, Daniel O. and Omeike, Mathew O. and Osinuga, Idowu A. and Badmus, Biodun S.},
title = {Boundedness criteria for a class of second order nonlinear differential equations with delay},
journal = {Mathematica Bohemica},
pages = {303--327},
publisher = {mathdoc},
volume = {148},
number = {3},
year = {2023},
doi = {10.21136/MB.2022.0166-21},
mrnumber = {4628615},
zbl = {07729579},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0166-21/}
}
TY - JOUR AU - Adams, Daniel O. AU - Omeike, Mathew O. AU - Osinuga, Idowu A. AU - Badmus, Biodun S. TI - Boundedness criteria for a class of second order nonlinear differential equations with delay JO - Mathematica Bohemica PY - 2023 SP - 303 EP - 327 VL - 148 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0166-21/ DO - 10.21136/MB.2022.0166-21 LA - en ID - 10_21136_MB_2022_0166_21 ER -
%0 Journal Article %A Adams, Daniel O. %A Omeike, Mathew O. %A Osinuga, Idowu A. %A Badmus, Biodun S. %T Boundedness criteria for a class of second order nonlinear differential equations with delay %J Mathematica Bohemica %D 2023 %P 303-327 %V 148 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0166-21/ %R 10.21136/MB.2022.0166-21 %G en %F 10_21136_MB_2022_0166_21
Adams, Daniel O.; Omeike, Mathew O.; Osinuga, Idowu A.; Badmus, Biodun S. Boundedness criteria for a class of second order nonlinear differential equations with delay. Mathematica Bohemica, Tome 148 (2023) no. 3, pp. 303-327. doi: 10.21136/MB.2022.0166-21
Cité par Sources :