Keywords: fractional difference equation; nonoscillatory; Caputo fractional difference; forcing term
@article{10_21136_MB_2022_0157_21,
author = {Alzabut, Jehad and Grace, Said Rezk and Selvam, A. George Maria and Janagaraj, Rajendran},
title = {Nonoscillatory solutions of discrete fractional order equations with positive and negative terms},
journal = {Mathematica Bohemica},
pages = {461--479},
year = {2023},
volume = {148},
number = {4},
doi = {10.21136/MB.2022.0157-21},
mrnumber = {4673831},
zbl = {07790597},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0157-21/}
}
TY - JOUR AU - Alzabut, Jehad AU - Grace, Said Rezk AU - Selvam, A. George Maria AU - Janagaraj, Rajendran TI - Nonoscillatory solutions of discrete fractional order equations with positive and negative terms JO - Mathematica Bohemica PY - 2023 SP - 461 EP - 479 VL - 148 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0157-21/ DO - 10.21136/MB.2022.0157-21 LA - en ID - 10_21136_MB_2022_0157_21 ER -
%0 Journal Article %A Alzabut, Jehad %A Grace, Said Rezk %A Selvam, A. George Maria %A Janagaraj, Rajendran %T Nonoscillatory solutions of discrete fractional order equations with positive and negative terms %J Mathematica Bohemica %D 2023 %P 461-479 %V 148 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0157-21/ %R 10.21136/MB.2022.0157-21 %G en %F 10_21136_MB_2022_0157_21
Alzabut, Jehad; Grace, Said Rezk; Selvam, A. George Maria; Janagaraj, Rajendran. Nonoscillatory solutions of discrete fractional order equations with positive and negative terms. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 461-479. doi: 10.21136/MB.2022.0157-21
[1] Alzabut, J., Abdeljawad, T.: Sufficient conditions for the oscillation of nonlinear fractional difference equations. J. Fract. Calc. Appl. 5 (2014), 177-187. | MR | JFM
[2] Alzabut, J., Abdeljawad, T., Alrabaiah, H.: Oscillation criteria for forced and damped nabla fractional difference equations. J. Comput. Anal. Appl. 24 (2018), 1387-1394. | MR
[3] Alzabut, J., Muthulakshmi, V., Özbekler, A., Ad\igüzel, H.: On the oscillation of nonlinear fractional difference equations with damping. Mathematics 7 (2019), Article ID 687, 14 pages. | DOI
[4] Atangana, A., Gómez-Aguilar, J. F.: Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133 (2018), Article ID 166, 22 pages. | DOI
[5] At\icı, F. M., Eloe, P. W.: A transform method in discrete fractional calculus. Int. J. Difference Equ. 2 (2007), 165-176. | MR
[6] At\icı, F. M., Şengül, S.: Modeling with fractional difference equations. J. Math. Anal. Appl. 369 (2010), 1-9. | DOI | MR | JFM
[7] Chatzarakis, G. E., Selvam, A. G. M., Janagaraj, R., Miliaras, G. N.: Oscillation criteria for a class of nonlinear discrete fractional order equations with damping term. Math. Slovaca 70 (2020), 1165-1182. | DOI | MR | JFM
[8] Chen, F.: Fixed points and asymptotic stability of nonlinear fractional difference equations. Electron. J. Qual. Theory Differ. Equ. 2011 (2011), Article ID 39, 18 pages. | DOI | MR | JFM
[9] Elaydi, S. N.: An Introduction to Difference Equations. Undergraduate Texts in Mathematics. Springer, New York (2005). | DOI | MR | JFM
[10] Grace, S. R., Graef, J. R., Tunç, E.: On the boundedness of nonoscillatory solutions of certain fractional differential equations with positive and negative terms. Appl. Math. Lett. 97 (2019), 114-120. | DOI | MR | JFM
[11] Grace, S. R., Zafer, A.: On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations. Eur. Phys. J. Spec. Top. 226 (2017), 3657-3665. | DOI | MR
[12] Graef, J. R., Grace, S. R., Tunç, E.: On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations with positive and negative terms. Opusc. Math. 40 (2020), 227-239. | DOI | MR | JFM
[13] Holm, M.: The Theory of Discrete Fractional Calculus: Development and Application. University of Nebraska, Lincoln (2011). | MR
[14] Holte, J. M.: Discrete Gronwall lemma and applications. MAA North Central Section Meeting at the University of North Dakota. Available at http://homepages.gac.edu/ {holte/publications/GronwallLemma.pdf} (2009), 1-8.
[15] Ionescu, C., Lopes, A., Copot, D., Machado, J. A. T., Bates, J. H. T.: The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 51 (2017), 141-159. | DOI | MR | JFM
[16] Kumar, D., Baleanu, D.: Editorial. Fractional Calculus and Its Applications in Physics Frontiers in Physics 7. Frontiers Media, London (2019), 1-4. | DOI
[17] Selvam, A. G. M., Alzabut, J., Janagaraj, R., Adiguzel, H.: Oscillation analysis for nonlinear discrete fractional order delay and neutral equations with forcing term. Dyn. Syst. Appl. 29 (2020), 327-342. | DOI
[18] Selvam, A. G. M., Jacintha, M., Janagaraj, R.: Existence of nonoscillatory solutions of nonlinear neutral delay difference equation of fractional order. Adv. Math. Sci. J. 9 (2020), 4971-4983. | DOI
[19] Selvam, A. G. M., Janagaraj, R.: Oscillation criteria of a class of fractional order damped difference equations. Int. J. Appl. Math. 32 (2019), 433-441. | DOI
[20] Selvam, A. G. M., Janagaraj, R.: New oscillation criteria for discrete fractional order forced nonlinear equations. J. Phys., Conf. Ser. 1597 (2020), Article ID 012057, 8 pages. | DOI
[21] Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64 (2018), 213-231. | DOI | JFM
Cité par Sources :