Nonoscillatory solutions of discrete fractional order equations with positive and negative terms
Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 461-479
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
This paper aims at discussing asymptotic behaviour of nonoscillatory solutions of the forced fractional difference equations of the form \begin{align} \Delta ^{\gamma }u(\kappa )+\Theta [\kappa +\gamma ,w(\kappa +\gamma )]\\=\Phi (\kappa +\gamma )+\Upsilon (\kappa +\gamma )w^{\nu }(\kappa +\gamma ) +\Psi [\kappa +\gamma ,w(\kappa +\gamma )],\quad \kappa \in \mathbb {N}_{1-\gamma },\\ u_{0} ={0}, \end{align} where $\mathbb {N}_{1-\gamma }=\{1-\gamma ,2-\gamma ,3-\gamma ,\cdots \}$, $0\gamma \leq 1$, $\Delta ^{\gamma }$ is a Caputo-like fractional difference operator. Three cases are investigated by using some salient features of discrete fractional calculus and mathematical inequalities. Examples are presented to illustrate the validity of the theoretical results.
Classification :
26A33, 39A10, 39A13, 39A21
Keywords: fractional difference equation; nonoscillatory; Caputo fractional difference; forcing term
Keywords: fractional difference equation; nonoscillatory; Caputo fractional difference; forcing term
@article{10_21136_MB_2022_0157_21,
author = {Alzabut, Jehad and Grace, Said Rezk and Selvam, A. George Maria and Janagaraj, Rajendran},
title = {Nonoscillatory solutions of discrete fractional order equations with positive and negative terms},
journal = {Mathematica Bohemica},
pages = {461--479},
publisher = {mathdoc},
volume = {148},
number = {4},
year = {2023},
doi = {10.21136/MB.2022.0157-21},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0157-21/}
}
TY - JOUR AU - Alzabut, Jehad AU - Grace, Said Rezk AU - Selvam, A. George Maria AU - Janagaraj, Rajendran TI - Nonoscillatory solutions of discrete fractional order equations with positive and negative terms JO - Mathematica Bohemica PY - 2023 SP - 461 EP - 479 VL - 148 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0157-21/ DO - 10.21136/MB.2022.0157-21 LA - en ID - 10_21136_MB_2022_0157_21 ER -
%0 Journal Article %A Alzabut, Jehad %A Grace, Said Rezk %A Selvam, A. George Maria %A Janagaraj, Rajendran %T Nonoscillatory solutions of discrete fractional order equations with positive and negative terms %J Mathematica Bohemica %D 2023 %P 461-479 %V 148 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0157-21/ %R 10.21136/MB.2022.0157-21 %G en %F 10_21136_MB_2022_0157_21
Alzabut, Jehad; Grace, Said Rezk; Selvam, A. George Maria; Janagaraj, Rajendran. Nonoscillatory solutions of discrete fractional order equations with positive and negative terms. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 461-479. doi: 10.21136/MB.2022.0157-21
Cité par Sources :