Nonoscillatory solutions of discrete fractional order equations with positive and negative terms
Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 461-479
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper aims at discussing asymptotic behaviour of nonoscillatory solutions of the forced fractional difference equations of the form \begin{align} \Delta ^{\gamma }u(\kappa )+\Theta [\kappa +\gamma ,w(\kappa +\gamma )]\\=\Phi (\kappa +\gamma )+\Upsilon (\kappa +\gamma )w^{\nu }(\kappa +\gamma ) +\Psi [\kappa +\gamma ,w(\kappa +\gamma )],\quad \kappa \in \mathbb {N}_{1-\gamma },\\ u_{0} ={0}, \end{align} where $\mathbb {N}_{1-\gamma }=\{1-\gamma ,2-\gamma ,3-\gamma ,\cdots \}$, $0\gamma \leq 1$, $\Delta ^{\gamma }$ is a Caputo-like fractional difference operator. Three cases are investigated by using some salient features of discrete fractional calculus and mathematical inequalities. Examples are presented to illustrate the validity of the theoretical results.
This paper aims at discussing asymptotic behaviour of nonoscillatory solutions of the forced fractional difference equations of the form \begin{align} \Delta ^{\gamma }u(\kappa )+\Theta [\kappa +\gamma ,w(\kappa +\gamma )]\\=\Phi (\kappa +\gamma )+\Upsilon (\kappa +\gamma )w^{\nu }(\kappa +\gamma ) +\Psi [\kappa +\gamma ,w(\kappa +\gamma )],\quad \kappa \in \mathbb {N}_{1-\gamma },\\ u_{0} ={0}, \end{align} where $\mathbb {N}_{1-\gamma }=\{1-\gamma ,2-\gamma ,3-\gamma ,\cdots \}$, $0\gamma \leq 1$, $\Delta ^{\gamma }$ is a Caputo-like fractional difference operator. Three cases are investigated by using some salient features of discrete fractional calculus and mathematical inequalities. Examples are presented to illustrate the validity of the theoretical results.
DOI : 10.21136/MB.2022.0157-21
Classification : 26A33, 39A10, 39A13, 39A21
Keywords: fractional difference equation; nonoscillatory; Caputo fractional difference; forcing term
@article{10_21136_MB_2022_0157_21,
     author = {Alzabut, Jehad and Grace, Said Rezk and Selvam, A. George Maria and Janagaraj, Rajendran},
     title = {Nonoscillatory solutions of discrete fractional order equations with positive and negative terms},
     journal = {Mathematica Bohemica},
     pages = {461--479},
     year = {2023},
     volume = {148},
     number = {4},
     doi = {10.21136/MB.2022.0157-21},
     mrnumber = {4673831},
     zbl = {07790597},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0157-21/}
}
TY  - JOUR
AU  - Alzabut, Jehad
AU  - Grace, Said Rezk
AU  - Selvam, A. George Maria
AU  - Janagaraj, Rajendran
TI  - Nonoscillatory solutions of discrete fractional order equations with positive and negative terms
JO  - Mathematica Bohemica
PY  - 2023
SP  - 461
EP  - 479
VL  - 148
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0157-21/
DO  - 10.21136/MB.2022.0157-21
LA  - en
ID  - 10_21136_MB_2022_0157_21
ER  - 
%0 Journal Article
%A Alzabut, Jehad
%A Grace, Said Rezk
%A Selvam, A. George Maria
%A Janagaraj, Rajendran
%T Nonoscillatory solutions of discrete fractional order equations with positive and negative terms
%J Mathematica Bohemica
%D 2023
%P 461-479
%V 148
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0157-21/
%R 10.21136/MB.2022.0157-21
%G en
%F 10_21136_MB_2022_0157_21
Alzabut, Jehad; Grace, Said Rezk; Selvam, A. George Maria; Janagaraj, Rajendran. Nonoscillatory solutions of discrete fractional order equations with positive and negative terms. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 461-479. doi: 10.21136/MB.2022.0157-21

[1] Alzabut, J., Abdeljawad, T.: Sufficient conditions for the oscillation of nonlinear fractional difference equations. J. Fract. Calc. Appl. 5 (2014), 177-187. | MR | JFM

[2] Alzabut, J., Abdeljawad, T., Alrabaiah, H.: Oscillation criteria for forced and damped nabla fractional difference equations. J. Comput. Anal. Appl. 24 (2018), 1387-1394. | MR

[3] Alzabut, J., Muthulakshmi, V., Özbekler, A., Ad\igüzel, H.: On the oscillation of nonlinear fractional difference equations with damping. Mathematics 7 (2019), Article ID 687, 14 pages. | DOI

[4] Atangana, A., Gómez-Aguilar, J. F.: Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133 (2018), Article ID 166, 22 pages. | DOI

[5] At\icı, F. M., Eloe, P. W.: A transform method in discrete fractional calculus. Int. J. Difference Equ. 2 (2007), 165-176. | MR

[6] At\icı, F. M., Şengül, S.: Modeling with fractional difference equations. J. Math. Anal. Appl. 369 (2010), 1-9. | DOI | MR | JFM

[7] Chatzarakis, G. E., Selvam, A. G. M., Janagaraj, R., Miliaras, G. N.: Oscillation criteria for a class of nonlinear discrete fractional order equations with damping term. Math. Slovaca 70 (2020), 1165-1182. | DOI | MR | JFM

[8] Chen, F.: Fixed points and asymptotic stability of nonlinear fractional difference equations. Electron. J. Qual. Theory Differ. Equ. 2011 (2011), Article ID 39, 18 pages. | DOI | MR | JFM

[9] Elaydi, S. N.: An Introduction to Difference Equations. Undergraduate Texts in Mathematics. Springer, New York (2005). | DOI | MR | JFM

[10] Grace, S. R., Graef, J. R., Tunç, E.: On the boundedness of nonoscillatory solutions of certain fractional differential equations with positive and negative terms. Appl. Math. Lett. 97 (2019), 114-120. | DOI | MR | JFM

[11] Grace, S. R., Zafer, A.: On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations. Eur. Phys. J. Spec. Top. 226 (2017), 3657-3665. | DOI | MR

[12] Graef, J. R., Grace, S. R., Tunç, E.: On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations with positive and negative terms. Opusc. Math. 40 (2020), 227-239. | DOI | MR | JFM

[13] Holm, M.: The Theory of Discrete Fractional Calculus: Development and Application. University of Nebraska, Lincoln (2011). | MR

[14] Holte, J. M.: Discrete Gronwall lemma and applications. MAA North Central Section Meeting at the University of North Dakota. Available at http://homepages.gac.edu/ {holte/publications/GronwallLemma.pdf} (2009), 1-8.

[15] Ionescu, C., Lopes, A., Copot, D., Machado, J. A. T., Bates, J. H. T.: The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 51 (2017), 141-159. | DOI | MR | JFM

[16] Kumar, D., Baleanu, D.: Editorial. Fractional Calculus and Its Applications in Physics Frontiers in Physics 7. Frontiers Media, London (2019), 1-4. | DOI

[17] Selvam, A. G. M., Alzabut, J., Janagaraj, R., Adiguzel, H.: Oscillation analysis for nonlinear discrete fractional order delay and neutral equations with forcing term. Dyn. Syst. Appl. 29 (2020), 327-342. | DOI

[18] Selvam, A. G. M., Jacintha, M., Janagaraj, R.: Existence of nonoscillatory solutions of nonlinear neutral delay difference equation of fractional order. Adv. Math. Sci. J. 9 (2020), 4971-4983. | DOI

[19] Selvam, A. G. M., Janagaraj, R.: Oscillation criteria of a class of fractional order damped difference equations. Int. J. Appl. Math. 32 (2019), 433-441. | DOI

[20] Selvam, A. G. M., Janagaraj, R.: New oscillation criteria for discrete fractional order forced nonlinear equations. J. Phys., Conf. Ser. 1597 (2020), Article ID 012057, 8 pages. | DOI

[21] Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64 (2018), 213-231. | DOI | JFM

Cité par Sources :