Keywords: Bresse system; delay; decay rate; energy method; semigroup method; thermoelastic
@article{10_21136_MB_2022_0154_21,
author = {Bouzettouta, Lamine and Baibeche, Sabah and Abdelli, Manel and Guesmia, Amar},
title = {Stability result for a thermoelastic {Bresse} system with delay term in the internal feedback},
journal = {Mathematica Bohemica},
pages = {409--434},
year = {2023},
volume = {148},
number = {3},
doi = {10.21136/MB.2022.0154-21},
mrnumber = {4628618},
zbl = {07729582},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0154-21/}
}
TY - JOUR AU - Bouzettouta, Lamine AU - Baibeche, Sabah AU - Abdelli, Manel AU - Guesmia, Amar TI - Stability result for a thermoelastic Bresse system with delay term in the internal feedback JO - Mathematica Bohemica PY - 2023 SP - 409 EP - 434 VL - 148 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0154-21/ DO - 10.21136/MB.2022.0154-21 LA - en ID - 10_21136_MB_2022_0154_21 ER -
%0 Journal Article %A Bouzettouta, Lamine %A Baibeche, Sabah %A Abdelli, Manel %A Guesmia, Amar %T Stability result for a thermoelastic Bresse system with delay term in the internal feedback %J Mathematica Bohemica %D 2023 %P 409-434 %V 148 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0154-21/ %R 10.21136/MB.2022.0154-21 %G en %F 10_21136_MB_2022_0154_21
Bouzettouta, Lamine; Baibeche, Sabah; Abdelli, Manel; Guesmia, Amar. Stability result for a thermoelastic Bresse system with delay term in the internal feedback. Mathematica Bohemica, Tome 148 (2023) no. 3, pp. 409-434. doi: 10.21136/MB.2022.0154-21
[1] Boussouira, F. Alabau, Rivera, J. E. Muñoz, Júnior, D. S. Almeida: Stability to weak dissipative Bresse system. J. Math. Anal. Appl. 374 (2011), 481-498. | DOI | MR | JFM
[2] Alves, M. O., Fatori, L. H., Silva, M. A. J., Monteiro, R. N.: Stability and optimality of decay rate for a weakly dissipative Bresse system. Math. Methods Appl. Sci. 38 (2015), 898-908. | DOI | MR | JFM
[3] Benaissa, A., Miloudi, M., Mokhtari, M.: Global existence and energy decay of solutions to a Bresse system with delay terms. Commentat. Math. Univ. Carol. 56 (2015), 169-186. | DOI | MR | JFM
[4] Bouzettouta, L., Zitouni, S., Zennir, K., Guesmia, A.: Stability of Bresse system with internal distributed delay. J. Math. Comput. Sci. 7 (2017), 92-118.
[5] Bouzettouta, L., Zitouni, S., Zennir, K., Sissaoui, H.: Well-posedness and decay of solutions to Bresse system with internal distributed delay. Int. J. Appl. Math. Stat. 56 (2017), 153-168. | MR
[6] Bresse, J. A. C.: Cours de méchanique appliquée. Mallet Bachelier, Paris (1859), French.
[7] Chen, G.: Control and stabilization for the wave equation in a bounded domain. SIAM J. Control Optim. 17 (1979), 66-81. | DOI | MR | JFM
[8] Chen, G.: Control and stabilization for the wave equation in a bounded domain. II. SIAM J. Control Optim. 19 (1981), 114-122. | DOI | MR | JFM
[9] Datko, R., Lagnese, J., Polis, M. P.: An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24 (1986), 152-156. | DOI | MR | JFM
[10] Fatori, L. H., Rivera, J. E. Muñoz: Rates of decay to weak thermoelastic Bresse system. IMA J. Appl. Math. 75 (2010), 881-904. | DOI | MR | JFM
[11] Sare, H. D. Fernándes, Racke, R.: On the stability of damped Timoshenko systems: Cattaneo versus Fourier law. Arch. Ration. Mech. Anal. 194 (2009), 221-251. | DOI | MR | JFM
[12] Gallego, F. A., Rivera, J. E. Muñoz: Decay rates for solutions to thermoelastic Bresse systems of types I and III. Electron. J. Differ. Equ. 2017 (2017), Article ID 73, 26 pages. | MR | JFM
[13] Guesmia, A., Kafini, M.: Bresse system with infinite memories. Math. Methods Appl. Sci. 38 (2015), 2389-2402. | DOI | MR | JFM
[14] Keddi, A. A., Apalara, T. A., Messaoudi, S. A.: Exponential and polynomial decay in a thermoelastic-Bresse system with second sound. Appl. Math. Optim. 77 (2018), 315-341. | DOI | MR | JFM
[15] Kim, J. U., Renardy, Y.: Boundary control of the Timoshenko beam. SIAM J. Control Optim. 25 (1987), 1417-1429. | DOI | MR | JFM
[16] Komornik, V.: Exact Controllability and Stabilization: The Multiplier Method. Research in Applied Mathematics 36. John Wiley & Sons, Chichester (1994). | MR | JFM
[17] Liu, Z., Rao, B.: Energy decay rate of the thermoelastic Bresse system. Z. Angew. Math. Phys. 60 (2009), 54-69. | DOI | MR | JFM
[18] Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems. Chapman & Hall/CRC Research Notes in Mathematics 398. Chapman & Hall/CRC, Boca Raton (1999). | MR | JFM
[19] Messaoudi, S. A., Mustafa, M. I.: On the internal and boundary stabilization of Timoshenko beams. NoDEA, Nonlinear Differ. Equ. Appl. 15 (2008), 655-671. | DOI | MR | JFM
[20] Messaoudi, S. A., Mustafa, M. I.: On the stabilization of the Timoshenko system by a weak nonlinear dissipation. Math. Methods Appl. Sci. 32 (2009), 454-469. | DOI | MR | JFM
[21] Rivera, J. E. Munõz, Racke, R.: Global stability for damped Timoshenko systems. Discrete Contin. Dyn. Syst. 9 (2003), 1625-1639. | DOI | MR | JFM
[22] Mustafa, M. I.: A uniform stability result for thermoelasticity of type III with boundary distributed delay. J. Math. Anal. Appl. 415 (2014), 148-158. | DOI | MR | JFM
[23] Mustafa, M. I., Kafini, M.: Exponential decay in thermoelastic systems with internal distributed delay. Palest. J. Math. 2 (2013), 287-299. | MR | JFM
[24] Nakao, M.: Decay of solutions of some nonlinear evolution equations. J. Math. Anal. Appl. 60 (1977), 542-549. | DOI | MR | JFM
[25] Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45 (2006), 1561-1585. | DOI | MR | JFM
[26] Nicaise, S., Pignotti, C.: Stabilization of the wave equation with boundary or internal distributed delay. Differ. Integral Equ. 21 (2008), 935-958. | MR | JFM
[27] Ouchnane, D.: A stability result of a Timoshenko system in thermoelasticity of second sound with a delay term in the internal feedback. Georgian Math. J. 21 (2014), 475-489. | DOI | MR | JFM
[28] Park, J.-H., Kang, J.-R.: Energy decay of solutions for Timoshenko beam with a weak non-linear dissipation. IMA J. Appl. Math. 76 (2011), 340-350. | DOI | MR | JFM
[29] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44. Springer, New York (1983). | DOI | MR | JFM
[30] Raposo, C. A., Ferreira, J., Santos, M. L., Castro, N. N. O.: Exponential stability for the Timoshenko system with two weak dampings. Appl. Math. Lett. 18 (2005), 535-541. | DOI | MR | JFM
[31] Santos, M. L., Soufyane, A., Júnior, D. S. Almeida: Asymptotic behavior to Bresse system with past history. Q. Appl. Math. 73 (2015), 23-54. | DOI | MR | JFM
[32] Soriano, J. A., Rivera, J. E. Muñoz, Fatori, L. H.: Bresse system with indefinite damping. J. Math. Anal. Appl. 387 (2012), 284-290. | DOI | MR | JFM
[33] Timoshenko, S. P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Phil. Mag. (6) 41 (1921), 744-746. | DOI
[34] Wehbe, A., Youssef, W.: Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks. J. Math. Phys. 51 (2010), Article ID 103523, 17 pages. | DOI | MR | JFM
[35] Xu, C. Q., Yung, S. P., Li, L. K.: Stabilization of wave systems with input delay in the boundary control. ESAIM, Control Optim. Calc. Var. 12 (2006), 770-785. | DOI | MR | JFM
[36] Zitouni, S., Bouzettouta, L., Zennir, K., Ouchenane, D.: Exponential decay of thermo-elastic Bresse system with distributed delay term. Hacet. J. Math. Stat. 47 (2018), 1216-1230. | DOI | MR | JFM
Cité par Sources :