On relative pure cyclic fields with power integral bases
Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 117-128
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $L = K(\alpha )$ be an extension of a number field $K$, where $\alpha $ satisfies the monic irreducible polynomial $P(X)=X^{p}-\beta $ of prime degree belonging to $\mathfrak {o}_{K}[X]$ ($\mathfrak {o}_K$ is the ring of integers of $K$). The purpose of this paper is to study the monogenity of $L$ over $K$ by a simple and practical version of Dedekind's criterion characterizing the existence of power integral bases over an arbitrary Dedekind ring by using the Gauss valuation and the index ideal. As an illustration, we determine an integral basis of a pure nonic field $L$ with a pure cubic subfield, which is not necessarily a composite extension of two cubic subfields. We obtain a slightly simpler computation of the discriminant $d_{L/\mathbb {Q}}$.
Let $L = K(\alpha )$ be an extension of a number field $K$, where $\alpha $ satisfies the monic irreducible polynomial $P(X)=X^{p}-\beta $ of prime degree belonging to $\mathfrak {o}_{K}[X]$ ($\mathfrak {o}_K$ is the ring of integers of $K$). The purpose of this paper is to study the monogenity of $L$ over $K$ by a simple and practical version of Dedekind's criterion characterizing the existence of power integral bases over an arbitrary Dedekind ring by using the Gauss valuation and the index ideal. As an illustration, we determine an integral basis of a pure nonic field $L$ with a pure cubic subfield, which is not necessarily a composite extension of two cubic subfields. We obtain a slightly simpler computation of the discriminant $d_{L/\mathbb {Q}}$.
DOI : 10.21136/MB.2022.0142-21
Classification : 11R04, 11R16, 11R21, 11Rxx, 11Y40
Keywords: discrete valuation ring; Dedekind ring; monogenity; relative integral basis; nonic field
@article{10_21136_MB_2022_0142_21,
     author = {Sahmoudi, Mohammed and Charkani, Mohamed E.},
     title = {On relative pure cyclic fields with power integral bases},
     journal = {Mathematica Bohemica},
     pages = {117--128},
     year = {2023},
     volume = {148},
     number = {1},
     doi = {10.21136/MB.2022.0142-21},
     mrnumber = {4536314},
     zbl = {07655817},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0142-21/}
}
TY  - JOUR
AU  - Sahmoudi, Mohammed
AU  - Charkani, Mohamed E.
TI  - On relative pure cyclic fields with power integral bases
JO  - Mathematica Bohemica
PY  - 2023
SP  - 117
EP  - 128
VL  - 148
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0142-21/
DO  - 10.21136/MB.2022.0142-21
LA  - en
ID  - 10_21136_MB_2022_0142_21
ER  - 
%0 Journal Article
%A Sahmoudi, Mohammed
%A Charkani, Mohamed E.
%T On relative pure cyclic fields with power integral bases
%J Mathematica Bohemica
%D 2023
%P 117-128
%V 148
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0142-21/
%R 10.21136/MB.2022.0142-21
%G en
%F 10_21136_MB_2022_0142_21
Sahmoudi, Mohammed; Charkani, Mohamed E. On relative pure cyclic fields with power integral bases. Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 117-128. doi: 10.21136/MB.2022.0142-21

[1] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra. Addison-Wesley, Massachusetts (1969). | DOI | MR | JFM

[2] Cassels, J. W. S., (eds.), A. Fröhlich: Algebraic Number Theory. Academic Press, London (1967). | MR | JFM

[3] Cassou-Noguès, P., Taylor, M. J.: A note on elliptic curves and the monogeneity of rings of integers. J. Lond. Math. Soc., II. Ser. 37 (1988), 63-72. | DOI | MR | JFM

[4] Cassou-Noguès, P., Taylor, M. J.: Unités modulaires et monogénéité d'anneaux d'entiers. Séminaire de théorie des nombres, Paris 1986-87 Progress in Mathematics 75. Birkhäuser, Boston (1988), 35-64 French. | MR | JFM

[5] Charkani, M. E., Deajim, A.: Generating a power basis over a Dedekind ring. J. Number Theory 132 (2012), 2267-2276. | DOI | MR | JFM

[6] Charkani, M. E., Deajim, A.: Relative index extensions of Dedekind rings. JP J. Algebra Number Theory Appl. 27 (2012), 73-84. | MR | JFM

[7] Charkani, M. E., Lahlou, O.: On Dedekind's criterion and monogenicity over Dedekind rings. Int. J. Math. Math. Sci. 2003 (2003), 4455-4464. | DOI | MR | JFM

[8] Charkani, M. E., Sahmoudi, M.: Sextic extension with cubic subfield. JP J. Algebra Number Theory Appl. 34 (2014), 139-150. | JFM

[9] Charkani, M. E., Sahmoudi, M., Soullami, A.: Tower index formula and monogenecity. Commun. Algebra 49 (2021), 2469-2475. | DOI | MR | JFM

[10] Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics 138. Springer, Berlin (1993). | DOI | MR | JFM

[11] Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen. Abh. Akad. Wiss. Gött., Math-Phys. Kl., 3. Folge 23 (1878), 3-38 German.

[12] Fröhlich, A., Taylor, M. J.: Algebraic Number Theory. Cambridge Studies in Advanced Mathematics 27. Cambridge University Press, Cambridge (1993). | DOI | MR | JFM

[13] Gaál, I., Remete, L.: Power integral bases in cubic and quartic extensions of real quadratic fields. Acta Sci. Math. 85 (2019), 413-429. | DOI | MR | JFM

[14] Hameed, A., Nakahara, T.: Integral bases and relative monogenity of pure octic fields. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 58 (2015), 419-433. | MR | JFM

[15] Ichimura, H.: On power integral bases of unramified cyclic extensions of prime degree. J. Algebra 235 (2001), 104-112. | DOI | MR | JFM

[16] Janusz, G. J.: Algebraic Number Fields. Graduate Studies in Mathematics 7. AMS, Providence (1996). | DOI | MR | JFM

[17] Kumar, M., Khanduja, S. K.: A generalization of Dedekind criterion. Commun. Algebra 35 (2007), 1479-1486. | DOI | MR | JFM

[18] Lavallee, M. J., Spearman, B. K., Williams, K. S.: Lifting monogenic cubic fields to monogenic sextic fields. Kodai Math. J. 34 (2011), 410-425. | DOI | MR | JFM

[19] Mann, H. B.: On integral bases. Proc. Am. Math. Soc. 9 (1958), 167-172. | DOI | MR | JFM

[20] Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Springer, Berlin (1990). | DOI | MR | JFM

[21] Neukirch, J.: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften 322. Springer, Berlin (1999). | DOI | MR | JFM

[22] Sahmoudi, M.: Explicit integral basis for a family of sextic field. Gulf J. Math. 4 (2016), 217-222. | DOI | MR | JFM

[23] Sahmoudi, M., Soullami, A.: On monogenicity of relative cubic-power extensions. Adv. Math., Sci. J. 9 (2020), 6817-6827. | DOI

[24] Sahmoudi, M., Soullami, A.: On sextic integral bases using relative quadratic extention. Bol. Soc. Parana. Mat. (3) 38 (2020), 175-180. | DOI | MR | JFM

[25] Schmid, P.: On criteria by Dedekind and Ore for integral ring extensions. Arch. Math. 84 (2005), 304-310. | DOI | MR | JFM

[26] Soullami, A., Sahmoudi, M., Boughaleb, O.: On relative power integral basis of a family of numbers fields. Rocky Mt. J. Math. 51 (2021), 1443-1452. | DOI | MR | JFM

[27] Spearman, B. K., Williams, K. S.: Relative integral bases for quartic fields over quadratic subfields. Acta Math. Hung. 70 (1996), 185-192. | DOI | MR | JFM

[28] Spearman, B. K., Williams, K. S.: A relative integral basis over $\mathbb{Q}(\sqrt{-3})$ for the normal closure of a pure cubic field. Int. J. Math. Math. Sci. 25 (2003), 1623-1626. | DOI | MR | JFM

[29] Washington, L. C.: Relative integral bases. Proc. Am. Math. Soc. 56 (1976), 93-94. | DOI | MR | JFM

Cité par Sources :