On relative pure cyclic fields with power integral bases
Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 117-128
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $L = K(\alpha )$ be an extension of a number field $K$, where $\alpha $ satisfies the monic irreducible polynomial $P(X)=X^{p}-\beta $ of prime degree belonging to $\mathfrak {o}_{K}[X]$ ($\mathfrak {o}_K$ is the ring of integers of $K$). The purpose of this paper is to study the monogenity of $L$ over $K$ by a simple and practical version of Dedekind's criterion characterizing the existence of power integral bases over an arbitrary Dedekind ring by using the Gauss valuation and the index ideal. As an illustration, we determine an integral basis of a pure nonic field $L$ with a pure cubic subfield, which is not necessarily a composite extension of two cubic subfields. We obtain a slightly simpler computation of the discriminant $d_{L/\mathbb {Q}}$.
DOI :
10.21136/MB.2022.0142-21
Classification :
11R04, 11R16, 11R21, 11Rxx, 11Y40
Keywords: discrete valuation ring; Dedekind ring; monogenity; relative integral basis; nonic field
Keywords: discrete valuation ring; Dedekind ring; monogenity; relative integral basis; nonic field
@article{10_21136_MB_2022_0142_21,
author = {Sahmoudi, Mohammed and Charkani, Mohamed E.},
title = {On relative pure cyclic fields with power integral bases},
journal = {Mathematica Bohemica},
pages = {117--128},
publisher = {mathdoc},
volume = {148},
number = {1},
year = {2023},
doi = {10.21136/MB.2022.0142-21},
mrnumber = {4536314},
zbl = {07655817},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0142-21/}
}
TY - JOUR AU - Sahmoudi, Mohammed AU - Charkani, Mohamed E. TI - On relative pure cyclic fields with power integral bases JO - Mathematica Bohemica PY - 2023 SP - 117 EP - 128 VL - 148 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0142-21/ DO - 10.21136/MB.2022.0142-21 LA - en ID - 10_21136_MB_2022_0142_21 ER -
%0 Journal Article %A Sahmoudi, Mohammed %A Charkani, Mohamed E. %T On relative pure cyclic fields with power integral bases %J Mathematica Bohemica %D 2023 %P 117-128 %V 148 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0142-21/ %R 10.21136/MB.2022.0142-21 %G en %F 10_21136_MB_2022_0142_21
Sahmoudi, Mohammed; Charkani, Mohamed E. On relative pure cyclic fields with power integral bases. Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 117-128. doi: 10.21136/MB.2022.0142-21
Cité par Sources :