Keywords: discrete valuation ring; Dedekind ring; monogenity; relative integral basis; nonic field
@article{10_21136_MB_2022_0142_21,
author = {Sahmoudi, Mohammed and Charkani, Mohamed E.},
title = {On relative pure cyclic fields with power integral bases},
journal = {Mathematica Bohemica},
pages = {117--128},
year = {2023},
volume = {148},
number = {1},
doi = {10.21136/MB.2022.0142-21},
mrnumber = {4536314},
zbl = {07655817},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0142-21/}
}
TY - JOUR AU - Sahmoudi, Mohammed AU - Charkani, Mohamed E. TI - On relative pure cyclic fields with power integral bases JO - Mathematica Bohemica PY - 2023 SP - 117 EP - 128 VL - 148 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0142-21/ DO - 10.21136/MB.2022.0142-21 LA - en ID - 10_21136_MB_2022_0142_21 ER -
%0 Journal Article %A Sahmoudi, Mohammed %A Charkani, Mohamed E. %T On relative pure cyclic fields with power integral bases %J Mathematica Bohemica %D 2023 %P 117-128 %V 148 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0142-21/ %R 10.21136/MB.2022.0142-21 %G en %F 10_21136_MB_2022_0142_21
Sahmoudi, Mohammed; Charkani, Mohamed E. On relative pure cyclic fields with power integral bases. Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 117-128. doi: 10.21136/MB.2022.0142-21
[1] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra. Addison-Wesley, Massachusetts (1969). | DOI | MR | JFM
[2] Cassels, J. W. S., (eds.), A. Fröhlich: Algebraic Number Theory. Academic Press, London (1967). | MR | JFM
[3] Cassou-Noguès, P., Taylor, M. J.: A note on elliptic curves and the monogeneity of rings of integers. J. Lond. Math. Soc., II. Ser. 37 (1988), 63-72. | DOI | MR | JFM
[4] Cassou-Noguès, P., Taylor, M. J.: Unités modulaires et monogénéité d'anneaux d'entiers. Séminaire de théorie des nombres, Paris 1986-87 Progress in Mathematics 75. Birkhäuser, Boston (1988), 35-64 French. | MR | JFM
[5] Charkani, M. E., Deajim, A.: Generating a power basis over a Dedekind ring. J. Number Theory 132 (2012), 2267-2276. | DOI | MR | JFM
[6] Charkani, M. E., Deajim, A.: Relative index extensions of Dedekind rings. JP J. Algebra Number Theory Appl. 27 (2012), 73-84. | MR | JFM
[7] Charkani, M. E., Lahlou, O.: On Dedekind's criterion and monogenicity over Dedekind rings. Int. J. Math. Math. Sci. 2003 (2003), 4455-4464. | DOI | MR | JFM
[8] Charkani, M. E., Sahmoudi, M.: Sextic extension with cubic subfield. JP J. Algebra Number Theory Appl. 34 (2014), 139-150. | JFM
[9] Charkani, M. E., Sahmoudi, M., Soullami, A.: Tower index formula and monogenecity. Commun. Algebra 49 (2021), 2469-2475. | DOI | MR | JFM
[10] Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics 138. Springer, Berlin (1993). | DOI | MR | JFM
[11] Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen. Abh. Akad. Wiss. Gött., Math-Phys. Kl., 3. Folge 23 (1878), 3-38 German.
[12] Fröhlich, A., Taylor, M. J.: Algebraic Number Theory. Cambridge Studies in Advanced Mathematics 27. Cambridge University Press, Cambridge (1993). | DOI | MR | JFM
[13] Gaál, I., Remete, L.: Power integral bases in cubic and quartic extensions of real quadratic fields. Acta Sci. Math. 85 (2019), 413-429. | DOI | MR | JFM
[14] Hameed, A., Nakahara, T.: Integral bases and relative monogenity of pure octic fields. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 58 (2015), 419-433. | MR | JFM
[15] Ichimura, H.: On power integral bases of unramified cyclic extensions of prime degree. J. Algebra 235 (2001), 104-112. | DOI | MR | JFM
[16] Janusz, G. J.: Algebraic Number Fields. Graduate Studies in Mathematics 7. AMS, Providence (1996). | DOI | MR | JFM
[17] Kumar, M., Khanduja, S. K.: A generalization of Dedekind criterion. Commun. Algebra 35 (2007), 1479-1486. | DOI | MR | JFM
[18] Lavallee, M. J., Spearman, B. K., Williams, K. S.: Lifting monogenic cubic fields to monogenic sextic fields. Kodai Math. J. 34 (2011), 410-425. | DOI | MR | JFM
[19] Mann, H. B.: On integral bases. Proc. Am. Math. Soc. 9 (1958), 167-172. | DOI | MR | JFM
[20] Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Springer, Berlin (1990). | DOI | MR | JFM
[21] Neukirch, J.: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften 322. Springer, Berlin (1999). | DOI | MR | JFM
[22] Sahmoudi, M.: Explicit integral basis for a family of sextic field. Gulf J. Math. 4 (2016), 217-222. | DOI | MR | JFM
[23] Sahmoudi, M., Soullami, A.: On monogenicity of relative cubic-power extensions. Adv. Math., Sci. J. 9 (2020), 6817-6827. | DOI
[24] Sahmoudi, M., Soullami, A.: On sextic integral bases using relative quadratic extention. Bol. Soc. Parana. Mat. (3) 38 (2020), 175-180. | DOI | MR | JFM
[25] Schmid, P.: On criteria by Dedekind and Ore for integral ring extensions. Arch. Math. 84 (2005), 304-310. | DOI | MR | JFM
[26] Soullami, A., Sahmoudi, M., Boughaleb, O.: On relative power integral basis of a family of numbers fields. Rocky Mt. J. Math. 51 (2021), 1443-1452. | DOI | MR | JFM
[27] Spearman, B. K., Williams, K. S.: Relative integral bases for quartic fields over quadratic subfields. Acta Math. Hung. 70 (1996), 185-192. | DOI | MR | JFM
[28] Spearman, B. K., Williams, K. S.: A relative integral basis over $\mathbb{Q}(\sqrt{-3})$ for the normal closure of a pure cubic field. Int. J. Math. Math. Sci. 25 (2003), 1623-1626. | DOI | MR | JFM
[29] Washington, L. C.: Relative integral bases. Proc. Am. Math. Soc. 56 (1976), 93-94. | DOI | MR | JFM
Cité par Sources :