Keywords: nonlinear higher-order hyperbolic equation; nonlinear source term; global existence
@article{10_21136_MB_2022_0141_20,
author = {Abdelli, Mama and Beniani, Abderrahmane and Mezouar, Nadia and Chahtou, Ahmed},
title = {Existence and stability results of nonlinear higher-order wave equation with a nonlinear source term and a delay term},
journal = {Mathematica Bohemica},
pages = {11--34},
year = {2023},
volume = {148},
number = {1},
doi = {10.21136/MB.2022.0141-20},
mrnumber = {4536307},
zbl = {07655810},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0141-20/}
}
TY - JOUR AU - Abdelli, Mama AU - Beniani, Abderrahmane AU - Mezouar, Nadia AU - Chahtou, Ahmed TI - Existence and stability results of nonlinear higher-order wave equation with a nonlinear source term and a delay term JO - Mathematica Bohemica PY - 2023 SP - 11 EP - 34 VL - 148 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0141-20/ DO - 10.21136/MB.2022.0141-20 LA - en ID - 10_21136_MB_2022_0141_20 ER -
%0 Journal Article %A Abdelli, Mama %A Beniani, Abderrahmane %A Mezouar, Nadia %A Chahtou, Ahmed %T Existence and stability results of nonlinear higher-order wave equation with a nonlinear source term and a delay term %J Mathematica Bohemica %D 2023 %P 11-34 %V 148 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0141-20/ %R 10.21136/MB.2022.0141-20 %G en %F 10_21136_MB_2022_0141_20
Abdelli, Mama; Beniani, Abderrahmane; Mezouar, Nadia; Chahtou, Ahmed. Existence and stability results of nonlinear higher-order wave equation with a nonlinear source term and a delay term. Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 11-34. doi: 10.21136/MB.2022.0141-20
[1] Arnold, V. I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics 60. Springer, New York (1978). | DOI | MR | JFM
[2] Benaissa, A., Louhibi, N.: Global existence and energy decay of solutions to a nonlinear wave equation with a delay term. Georgian Math. J. 20 (2013), 1-24. | DOI | MR | JFM
[3] Brenner, P., Wahl, W. von: Global classical solutions of nonlinear wave equations. Math. Z. 176 (1981), 87-121. | DOI | MR | JFM
[4] Komornik, V.: Exact Controllability and Stabilization: The Multiplier Method. Research in Applied Mathematics 36. Wiley, Chichester (1994). | MR | JFM
[5] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Paris (1969), French. | MR | JFM
[6] Liu, K.: Locally distributed control and damping for the conservative systems. SIAM J. Control Optim. 35 (1997), 1574-1590. | DOI | MR | JFM
[7] Nakao, M.: Bounded, periodic and almost periodic classical solutions of some nonlinear wave equations with a dissipative term. J. Math. Soc. Japan 30 (1978), 375-394. | DOI | MR | JFM
[8] Nakao, M., Kuwahara, H.: Decay estimates for some semilinear wave equations with degenerate dissipative terms. Funkc. Ekvacioj, Ser. Int. 30 (1987), 135-145. | MR | JFM
[9] Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45 (2006), 1561-1585. | DOI | MR | JFM
[10] Payne, L. E., Sattinger, D. H.: Saddle points and instability of nonlinear hyperbolic equations. Isr. J. Math. 22 (1975), 273-303. | DOI | MR | JFM
[11] Pecher, H.: Die Existenz regulärer Lösungen für Cauchy- und Anfangs-Randwertprobleme nichtlinear Wellengleichungen. Math. Z. 140 (1974), 263-279 German. | DOI | MR | JFM
[12] Wang, B.: Nonlinear scattering theory for a class of wave equations in $H^s$. J. Math. Anal. Appl. 296 (2004), 74-96. | DOI | MR | JFM
[13] Yanbing, Y., Ahmed, M. S., Lanlan, Q., Runzhang, X.: Global well-posedness of a class of fourth-order strongly damped nonlinear wave equation. Opusc. Math. 39 (2019), 297-313. | DOI | MR | JFM
[14] Ye, Y.: Existence and asymptotic behavior of global solutions for a class of nonlinear higher-order wave equation. J. Inequal. Appl. 2010 (2010), Article ID 394859, 14 pages. | DOI | MR | JFM
[15] Zuazua, E.: Exponential decay for the semilinear wave equation with locally distributed damping. Commun. Partial Differ. Equations 15 (1990), 205-235. | DOI | MR | JFM
Cité par Sources :