Existence and stability results of nonlinear higher-order wave equation with a nonlinear source term and a delay term
Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 11-34
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the initial-boundary value problem for a nonlinear higher-order nonlinear hyperbolic equation in a bounded domain. The existence of global weak solutions for this problem is established by using the potential well theory combined with Faedo-Galarkin method. We also established the asymptotic behavior of global solutions as $t\rightarrow \infty $ by applying the Lyapunov method.
We consider the initial-boundary value problem for a nonlinear higher-order nonlinear hyperbolic equation in a bounded domain. The existence of global weak solutions for this problem is established by using the potential well theory combined with Faedo-Galarkin method. We also established the asymptotic behavior of global solutions as $t\rightarrow \infty $ by applying the Lyapunov method.
DOI : 10.21136/MB.2022.0141-20
Classification : 35B40, 35L05, 35L75
Keywords: nonlinear higher-order hyperbolic equation; nonlinear source term; global existence
@article{10_21136_MB_2022_0141_20,
     author = {Abdelli, Mama and Beniani, Abderrahmane and Mezouar, Nadia and Chahtou, Ahmed},
     title = {Existence and stability results of nonlinear higher-order wave equation with a nonlinear source term and a delay term},
     journal = {Mathematica Bohemica},
     pages = {11--34},
     year = {2023},
     volume = {148},
     number = {1},
     doi = {10.21136/MB.2022.0141-20},
     mrnumber = {4536307},
     zbl = {07655810},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0141-20/}
}
TY  - JOUR
AU  - Abdelli, Mama
AU  - Beniani, Abderrahmane
AU  - Mezouar, Nadia
AU  - Chahtou, Ahmed
TI  - Existence and stability results of nonlinear higher-order wave equation with a nonlinear source term and a delay term
JO  - Mathematica Bohemica
PY  - 2023
SP  - 11
EP  - 34
VL  - 148
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0141-20/
DO  - 10.21136/MB.2022.0141-20
LA  - en
ID  - 10_21136_MB_2022_0141_20
ER  - 
%0 Journal Article
%A Abdelli, Mama
%A Beniani, Abderrahmane
%A Mezouar, Nadia
%A Chahtou, Ahmed
%T Existence and stability results of nonlinear higher-order wave equation with a nonlinear source term and a delay term
%J Mathematica Bohemica
%D 2023
%P 11-34
%V 148
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0141-20/
%R 10.21136/MB.2022.0141-20
%G en
%F 10_21136_MB_2022_0141_20
Abdelli, Mama; Beniani, Abderrahmane; Mezouar, Nadia; Chahtou, Ahmed. Existence and stability results of nonlinear higher-order wave equation with a nonlinear source term and a delay term. Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 11-34. doi: 10.21136/MB.2022.0141-20

[1] Arnold, V. I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics 60. Springer, New York (1978). | DOI | MR | JFM

[2] Benaissa, A., Louhibi, N.: Global existence and energy decay of solutions to a nonlinear wave equation with a delay term. Georgian Math. J. 20 (2013), 1-24. | DOI | MR | JFM

[3] Brenner, P., Wahl, W. von: Global classical solutions of nonlinear wave equations. Math. Z. 176 (1981), 87-121. | DOI | MR | JFM

[4] Komornik, V.: Exact Controllability and Stabilization: The Multiplier Method. Research in Applied Mathematics 36. Wiley, Chichester (1994). | MR | JFM

[5] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Paris (1969), French. | MR | JFM

[6] Liu, K.: Locally distributed control and damping for the conservative systems. SIAM J. Control Optim. 35 (1997), 1574-1590. | DOI | MR | JFM

[7] Nakao, M.: Bounded, periodic and almost periodic classical solutions of some nonlinear wave equations with a dissipative term. J. Math. Soc. Japan 30 (1978), 375-394. | DOI | MR | JFM

[8] Nakao, M., Kuwahara, H.: Decay estimates for some semilinear wave equations with degenerate dissipative terms. Funkc. Ekvacioj, Ser. Int. 30 (1987), 135-145. | MR | JFM

[9] Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45 (2006), 1561-1585. | DOI | MR | JFM

[10] Payne, L. E., Sattinger, D. H.: Saddle points and instability of nonlinear hyperbolic equations. Isr. J. Math. 22 (1975), 273-303. | DOI | MR | JFM

[11] Pecher, H.: Die Existenz regulärer Lösungen für Cauchy- und Anfangs-Randwertprobleme nichtlinear Wellengleichungen. Math. Z. 140 (1974), 263-279 German. | DOI | MR | JFM

[12] Wang, B.: Nonlinear scattering theory for a class of wave equations in $H^s$. J. Math. Anal. Appl. 296 (2004), 74-96. | DOI | MR | JFM

[13] Yanbing, Y., Ahmed, M. S., Lanlan, Q., Runzhang, X.: Global well-posedness of a class of fourth-order strongly damped nonlinear wave equation. Opusc. Math. 39 (2019), 297-313. | DOI | MR | JFM

[14] Ye, Y.: Existence and asymptotic behavior of global solutions for a class of nonlinear higher-order wave equation. J. Inequal. Appl. 2010 (2010), Article ID 394859, 14 pages. | DOI | MR | JFM

[15] Zuazua, E.: Exponential decay for the semilinear wave equation with locally distributed damping. Commun. Partial Differ. Equations 15 (1990), 205-235. | DOI | MR | JFM

Cité par Sources :