On Bhargava rings
Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 181-195
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $D$ be an integral domain with the quotient field $K$, $X$ an indeterminate over $K$ and $x$ an element of $D$. The Bhargava ring over $D$ at $x$ is defined to be $\mathbb {B}_x(D):=\{f\in \nobreak K[X]\colon \text {for all}\ a\in D,\ f(xX+a)\in D[X]\}$. In fact, $\mathbb {B}_x(D)$ is a subring of the ring of integer-valued polynomials over $D$. In this paper, we aim to investigate the behavior of $\mathbb {B}_x(D)$ under localization. In particular, we prove that $\mathbb {B}_x(D)$ behaves well under localization at prime ideals of $D$, when $D$ is a locally finite intersection of localizations. We also attempt a classification of integral domains $D$ such that $\mathbb {B}_x(D)$ is locally free, or at least faithfully flat (or flat) as a $D$-module (or $D[X]$-module, respectively). Particularly, we are interested in domains that are (locally) essential. A particular attention is devoted to provide conditions under which $\mathbb {B}_x(D)$ is trivial when dealing with essential domains. Finally, we calculate the Krull dimension of Bhargava rings over MZ-Jaffard domains. Interesting results are established with illustrating examples.
Let $D$ be an integral domain with the quotient field $K$, $X$ an indeterminate over $K$ and $x$ an element of $D$. The Bhargava ring over $D$ at $x$ is defined to be $\mathbb {B}_x(D):=\{f\in \nobreak K[X]\colon \text {for all}\ a\in D,\ f(xX+a)\in D[X]\}$. In fact, $\mathbb {B}_x(D)$ is a subring of the ring of integer-valued polynomials over $D$. In this paper, we aim to investigate the behavior of $\mathbb {B}_x(D)$ under localization. In particular, we prove that $\mathbb {B}_x(D)$ behaves well under localization at prime ideals of $D$, when $D$ is a locally finite intersection of localizations. We also attempt a classification of integral domains $D$ such that $\mathbb {B}_x(D)$ is locally free, or at least faithfully flat (or flat) as a $D$-module (or $D[X]$-module, respectively). Particularly, we are interested in domains that are (locally) essential. A particular attention is devoted to provide conditions under which $\mathbb {B}_x(D)$ is trivial when dealing with essential domains. Finally, we calculate the Krull dimension of Bhargava rings over MZ-Jaffard domains. Interesting results are established with illustrating examples.
DOI : 10.21136/MB.2022.0137-21
Classification : 13B30, 13C11, 13C15, 13F05, 13F20
Keywords: Bhargava ring; localization; (locally) essential domain; locally free module; (faithfully) flat module; Krull dimension
@article{10_21136_MB_2022_0137_21,
     author = {Chems-Eddin, Mohamed Mahmoud and Ouzzaouit, Omar and Tamoussit, Ali},
     title = {On {Bhargava} rings},
     journal = {Mathematica Bohemica},
     pages = {181--195},
     year = {2023},
     volume = {148},
     number = {2},
     doi = {10.21136/MB.2022.0137-21},
     mrnumber = {4585575},
     zbl = {07729571},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0137-21/}
}
TY  - JOUR
AU  - Chems-Eddin, Mohamed Mahmoud
AU  - Ouzzaouit, Omar
AU  - Tamoussit, Ali
TI  - On Bhargava rings
JO  - Mathematica Bohemica
PY  - 2023
SP  - 181
EP  - 195
VL  - 148
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0137-21/
DO  - 10.21136/MB.2022.0137-21
LA  - en
ID  - 10_21136_MB_2022_0137_21
ER  - 
%0 Journal Article
%A Chems-Eddin, Mohamed Mahmoud
%A Ouzzaouit, Omar
%A Tamoussit, Ali
%T On Bhargava rings
%J Mathematica Bohemica
%D 2023
%P 181-195
%V 148
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0137-21/
%R 10.21136/MB.2022.0137-21
%G en
%F 10_21136_MB_2022_0137_21
Chems-Eddin, Mohamed Mahmoud; Ouzzaouit, Omar; Tamoussit, Ali. On Bhargava rings. Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 181-195. doi: 10.21136/MB.2022.0137-21

[1] Alrasasi, I., Izelgue, L.: On the prime ideal structure of Bhargava rings. Commun. Algebra 38 (2010), 1385-1400. | DOI | MR | JFM

[2] Al-Rasasi, I., Izelgue, L.: Bhargava rings over subsets. Homological and Combinatorial Methods in Algebra Springer Proceedings in Mathematics & Statistics 228. Springer, Cham (2018), 9-26. | DOI | MR | JFM

[3] Anderson, D. D., Anderson, D. F.: Generalized GCD domains. Comment. Math. Univ. St. Pauli 28 (1980), 215-221. | MR | JFM

[4] Anderson, D. D., Anderson, D. F., Zafrullah, M.: Rings between $D[X]$ and $K[X]$. Houston J. Math. 17 (1991), 109-129. | MR | JFM

[5] Bhargava, M., Cahen, P.-J., Yeramian, J.: Finite generation properties for various rings of integer-valued polynomials. J. Algebra 322 (2009), 1129-1150. | DOI | MR | JFM

[6] Bourbaki, N.: Éléments de Mathématique. Algèbre Commutative. Chapitres 1 à 4. Masson, Paris (1985), French. | DOI | MR | JFM

[7] Brewer, J. W., Heinzer, W. J.: Associated primes of principal ideals. Duke Math. J. 41 (1974), 1-7. | DOI | MR | JFM

[8] Cahen, P.-J., Chabert, J.-L.: Integer-Valued Polynomials. Mathematical Surveys Monographs 48. American Mathematical Society, Providence (1997). | DOI | MR | JFM

[9] El-Baghdadi, S.: Semistar GCD domains. Commun. Algebra 38 (2010), 3029-3044. | DOI | MR | JFM

[10] Elliott, J.: Some new approaches to integer-valued polynomial rings. Commutative Algebra and Its Applications Walter de Gruyter, Berlin (2009), 223-237. | DOI | MR | JFM

[11] Elliott, J.: Integer-valued polynomial rings, $t$-closure, and associated primes. Commun. Algebra 39 (2011), 4128-4147. | DOI | MR | JFM

[12] Fontana, M., Kabbaj, S.: Essential domains and two conjectures in dimension theory. Proc. Am. Math. Soc. 132 (2004), 2529-2535. | DOI | MR | JFM

[13] Gilmer, R.: Multiplicative Ideal Theory. Queen's Papers in Pure and Applied Mathematics 90. Queen's University, Kingston (1992). | MR | JFM

[14] R. W. Gilmer, Jr.: Overrings of Prüfer domains. J. Algebra 4 (1966), 331-340. | DOI | MR | JFM

[15] Heinzer, W.: An essential integral domain with a non-essential localization. Can. J. Math. 33 (1981), 400-403. | DOI | MR | JFM

[16] Heinzer, W., Roitman, M.: Well-centered overrings of an integral domain. J. Algebra 272 (2004), 435-455. | DOI | MR | JFM

[17] Heubo-Kwegna, O. A., Olberding, B., Reinhart, A.: Group-theoretic and topological invariants of completely integrally closed Prüfer domains. J. Pure Appl. Algebra 220 (2016), 3927-3947. | DOI | MR | JFM

[18] Hutchins, H. C.: Examples of Commutative Rings. Polygonal Publishing House, Washington (1981). | MR | JFM

[19] Izelgue, L., Mimouni, A. A., Tamoussit, A.: On the module structure of the integer-valued polynomial rings. Bull. Malays. Math. Sci. Soc. (2) 43 (2020), 2687-2699. | DOI | MR | JFM

[20] Kim, H., Tamoussit, A.: Integral domains issued from associated primes. Commun. Algebra 50 (2022), 538-555. | DOI | MR

[21] Mott, J. L., Zafrullah, M.: On Prüfer $v$-multiplication domains. Manuscr. Math. 35 (1981), 1-26. | DOI | MR | JFM

[22] Park, M. H., Tartarone, F.: Bhargava rings that are Prüfer $v$-multiplication domains. J. Algebra Appl. 19 (2020), Article ID 2050098, 14 pages. | DOI | MR | JFM

[23] E. M. Pirtle, Jr.: Integral domains which are almost Krull. J. Sci. Hiroshima Univ., Ser. A-I 32 (1968), 441-447. | DOI | MR | JFM

[24] E. M. Pirtle, Jr.: Families of valuations and semigroups of fractionary ideal classes. Trans. Am. Math. Soc. 144 (1969), 427-439. | DOI | MR | JFM

[25] Tamoussit, A.: A note on the Krull dimension of rings between $D[X]$ and $ Int(D)$. Boll. Unione Mat. Ital. 14 (2021), 513-519. | DOI | MR | JFM

[26] Tartarone, F.: On the Krull dimension of $ Int(D)$ when $D$ is a pullback. Commutative Ring Theory Lecture Notes in Pure Applied Mathematics 185. Marcel Dekker, New York (1997), 457-470. | MR | JFM

[27] Yeramian, J.: Anneaux de Bhargava: Thèse de Doctorat. Université Paul Cézanne, Marseille (2004), French. | MR

[28] Yeramian, J.: Anneaux de Bhargava. Commun. Algebra 32 (2004), 3043-3069 French. | DOI | MR | JFM

[29] Yeramian, J.: Prime ideals of Bhargava domains. J. Pure Appl. Algebra 213 (2009), 1013-1025. | DOI | MR | JFM

[30] Zafrullah, M.: The $D+XD_S[X]$ construction from GCD-domains. J. Pure Appl. Algebra 50 (1988), 93-107. | DOI | MR | JFM

Cité par Sources :