On Bhargava rings
Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 181-195.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $D$ be an integral domain with the quotient field $K$, $X$ an indeterminate over $K$ and $x$ an element of $D$. The Bhargava ring over $D$ at $x$ is defined to be $\mathbb {B}_x(D):=\{f\in \nobreak K[X]\colon \text {for all}\ a\in D,\ f(xX+a)\in D[X]\}$. In fact, $\mathbb {B}_x(D)$ is a subring of the ring of integer-valued polynomials over $D$. In this paper, we aim to investigate the behavior of $\mathbb {B}_x(D)$ under localization. In particular, we prove that $\mathbb {B}_x(D)$ behaves well under localization at prime ideals of $D$, when $D$ is a locally finite intersection of localizations. We also attempt a classification of integral domains $D$ such that $\mathbb {B}_x(D)$ is locally free, or at least faithfully flat (or flat) as a $D$-module (or $D[X]$-module, respectively). Particularly, we are interested in domains that are (locally) essential. A particular attention is devoted to provide conditions under which $\mathbb {B}_x(D)$ is trivial when dealing with essential domains. Finally, we calculate the Krull dimension of Bhargava rings over MZ-Jaffard domains. Interesting results are established with illustrating examples.
DOI : 10.21136/MB.2022.0137-21
Classification : 13B30, 13C11, 13C15, 13F05, 13F20
Keywords: Bhargava ring; localization; (locally) essential domain; locally free module; (faithfully) flat module; Krull dimension
@article{10_21136_MB_2022_0137_21,
     author = {Chems-Eddin, Mohamed Mahmoud and Ouzzaouit, Omar and Tamoussit, Ali},
     title = {On {Bhargava} rings},
     journal = {Mathematica Bohemica},
     pages = {181--195},
     publisher = {mathdoc},
     volume = {148},
     number = {2},
     year = {2023},
     doi = {10.21136/MB.2022.0137-21},
     mrnumber = {4585575},
     zbl = {07729571},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0137-21/}
}
TY  - JOUR
AU  - Chems-Eddin, Mohamed Mahmoud
AU  - Ouzzaouit, Omar
AU  - Tamoussit, Ali
TI  - On Bhargava rings
JO  - Mathematica Bohemica
PY  - 2023
SP  - 181
EP  - 195
VL  - 148
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0137-21/
DO  - 10.21136/MB.2022.0137-21
LA  - en
ID  - 10_21136_MB_2022_0137_21
ER  - 
%0 Journal Article
%A Chems-Eddin, Mohamed Mahmoud
%A Ouzzaouit, Omar
%A Tamoussit, Ali
%T On Bhargava rings
%J Mathematica Bohemica
%D 2023
%P 181-195
%V 148
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0137-21/
%R 10.21136/MB.2022.0137-21
%G en
%F 10_21136_MB_2022_0137_21
Chems-Eddin, Mohamed Mahmoud; Ouzzaouit, Omar; Tamoussit, Ali. On Bhargava rings. Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 181-195. doi : 10.21136/MB.2022.0137-21. http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0137-21/

Cité par Sources :