On Bhargava rings
Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 181-195
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $D$ be an integral domain with the quotient field $K$, $X$ an indeterminate over $K$ and $x$ an element of $D$. The Bhargava ring over $D$ at $x$ is defined to be $\mathbb {B}_x(D):=\{f\in \nobreak K[X]\colon \text {for all}\ a\in D,\ f(xX+a)\in D[X]\}$. In fact, $\mathbb {B}_x(D)$ is a subring of the ring of integer-valued polynomials over $D$. In this paper, we aim to investigate the behavior of $\mathbb {B}_x(D)$ under localization. In particular, we prove that $\mathbb {B}_x(D)$ behaves well under localization at prime ideals of $D$, when $D$ is a locally finite intersection of localizations. We also attempt a classification of integral domains $D$ such that $\mathbb {B}_x(D)$ is locally free, or at least faithfully flat (or flat) as a $D$-module (or $D[X]$-module, respectively). Particularly, we are interested in domains that are (locally) essential. A particular attention is devoted to provide conditions under which $\mathbb {B}_x(D)$ is trivial when dealing with essential domains. Finally, we calculate the Krull dimension of Bhargava rings over MZ-Jaffard domains. Interesting results are established with illustrating examples.
DOI :
10.21136/MB.2022.0137-21
Classification :
13B30, 13C11, 13C15, 13F05, 13F20
Keywords: Bhargava ring; localization; (locally) essential domain; locally free module; (faithfully) flat module; Krull dimension
Keywords: Bhargava ring; localization; (locally) essential domain; locally free module; (faithfully) flat module; Krull dimension
@article{10_21136_MB_2022_0137_21,
author = {Chems-Eddin, Mohamed Mahmoud and Ouzzaouit, Omar and Tamoussit, Ali},
title = {On {Bhargava} rings},
journal = {Mathematica Bohemica},
pages = {181--195},
publisher = {mathdoc},
volume = {148},
number = {2},
year = {2023},
doi = {10.21136/MB.2022.0137-21},
mrnumber = {4585575},
zbl = {07729571},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0137-21/}
}
TY - JOUR AU - Chems-Eddin, Mohamed Mahmoud AU - Ouzzaouit, Omar AU - Tamoussit, Ali TI - On Bhargava rings JO - Mathematica Bohemica PY - 2023 SP - 181 EP - 195 VL - 148 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0137-21/ DO - 10.21136/MB.2022.0137-21 LA - en ID - 10_21136_MB_2022_0137_21 ER -
%0 Journal Article %A Chems-Eddin, Mohamed Mahmoud %A Ouzzaouit, Omar %A Tamoussit, Ali %T On Bhargava rings %J Mathematica Bohemica %D 2023 %P 181-195 %V 148 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0137-21/ %R 10.21136/MB.2022.0137-21 %G en %F 10_21136_MB_2022_0137_21
Chems-Eddin, Mohamed Mahmoud; Ouzzaouit, Omar; Tamoussit, Ali. On Bhargava rings. Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 181-195. doi: 10.21136/MB.2022.0137-21
Cité par Sources :