Keywords: Bhargava ring; localization; (locally) essential domain; locally free module; (faithfully) flat module; Krull dimension
@article{10_21136_MB_2022_0137_21,
author = {Chems-Eddin, Mohamed Mahmoud and Ouzzaouit, Omar and Tamoussit, Ali},
title = {On {Bhargava} rings},
journal = {Mathematica Bohemica},
pages = {181--195},
year = {2023},
volume = {148},
number = {2},
doi = {10.21136/MB.2022.0137-21},
mrnumber = {4585575},
zbl = {07729571},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0137-21/}
}
TY - JOUR AU - Chems-Eddin, Mohamed Mahmoud AU - Ouzzaouit, Omar AU - Tamoussit, Ali TI - On Bhargava rings JO - Mathematica Bohemica PY - 2023 SP - 181 EP - 195 VL - 148 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0137-21/ DO - 10.21136/MB.2022.0137-21 LA - en ID - 10_21136_MB_2022_0137_21 ER -
Chems-Eddin, Mohamed Mahmoud; Ouzzaouit, Omar; Tamoussit, Ali. On Bhargava rings. Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 181-195. doi: 10.21136/MB.2022.0137-21
[1] Alrasasi, I., Izelgue, L.: On the prime ideal structure of Bhargava rings. Commun. Algebra 38 (2010), 1385-1400. | DOI | MR | JFM
[2] Al-Rasasi, I., Izelgue, L.: Bhargava rings over subsets. Homological and Combinatorial Methods in Algebra Springer Proceedings in Mathematics & Statistics 228. Springer, Cham (2018), 9-26. | DOI | MR | JFM
[3] Anderson, D. D., Anderson, D. F.: Generalized GCD domains. Comment. Math. Univ. St. Pauli 28 (1980), 215-221. | MR | JFM
[4] Anderson, D. D., Anderson, D. F., Zafrullah, M.: Rings between $D[X]$ and $K[X]$. Houston J. Math. 17 (1991), 109-129. | MR | JFM
[5] Bhargava, M., Cahen, P.-J., Yeramian, J.: Finite generation properties for various rings of integer-valued polynomials. J. Algebra 322 (2009), 1129-1150. | DOI | MR | JFM
[6] Bourbaki, N.: Éléments de Mathématique. Algèbre Commutative. Chapitres 1 à 4. Masson, Paris (1985), French. | DOI | MR | JFM
[7] Brewer, J. W., Heinzer, W. J.: Associated primes of principal ideals. Duke Math. J. 41 (1974), 1-7. | DOI | MR | JFM
[8] Cahen, P.-J., Chabert, J.-L.: Integer-Valued Polynomials. Mathematical Surveys Monographs 48. American Mathematical Society, Providence (1997). | DOI | MR | JFM
[9] El-Baghdadi, S.: Semistar GCD domains. Commun. Algebra 38 (2010), 3029-3044. | DOI | MR | JFM
[10] Elliott, J.: Some new approaches to integer-valued polynomial rings. Commutative Algebra and Its Applications Walter de Gruyter, Berlin (2009), 223-237. | DOI | MR | JFM
[11] Elliott, J.: Integer-valued polynomial rings, $t$-closure, and associated primes. Commun. Algebra 39 (2011), 4128-4147. | DOI | MR | JFM
[12] Fontana, M., Kabbaj, S.: Essential domains and two conjectures in dimension theory. Proc. Am. Math. Soc. 132 (2004), 2529-2535. | DOI | MR | JFM
[13] Gilmer, R.: Multiplicative Ideal Theory. Queen's Papers in Pure and Applied Mathematics 90. Queen's University, Kingston (1992). | MR | JFM
[14] R. W. Gilmer, Jr.: Overrings of Prüfer domains. J. Algebra 4 (1966), 331-340. | DOI | MR | JFM
[15] Heinzer, W.: An essential integral domain with a non-essential localization. Can. J. Math. 33 (1981), 400-403. | DOI | MR | JFM
[16] Heinzer, W., Roitman, M.: Well-centered overrings of an integral domain. J. Algebra 272 (2004), 435-455. | DOI | MR | JFM
[17] Heubo-Kwegna, O. A., Olberding, B., Reinhart, A.: Group-theoretic and topological invariants of completely integrally closed Prüfer domains. J. Pure Appl. Algebra 220 (2016), 3927-3947. | DOI | MR | JFM
[18] Hutchins, H. C.: Examples of Commutative Rings. Polygonal Publishing House, Washington (1981). | MR | JFM
[19] Izelgue, L., Mimouni, A. A., Tamoussit, A.: On the module structure of the integer-valued polynomial rings. Bull. Malays. Math. Sci. Soc. (2) 43 (2020), 2687-2699. | DOI | MR | JFM
[20] Kim, H., Tamoussit, A.: Integral domains issued from associated primes. Commun. Algebra 50 (2022), 538-555. | DOI | MR
[21] Mott, J. L., Zafrullah, M.: On Prüfer $v$-multiplication domains. Manuscr. Math. 35 (1981), 1-26. | DOI | MR | JFM
[22] Park, M. H., Tartarone, F.: Bhargava rings that are Prüfer $v$-multiplication domains. J. Algebra Appl. 19 (2020), Article ID 2050098, 14 pages. | DOI | MR | JFM
[23] E. M. Pirtle, Jr.: Integral domains which are almost Krull. J. Sci. Hiroshima Univ., Ser. A-I 32 (1968), 441-447. | DOI | MR | JFM
[24] E. M. Pirtle, Jr.: Families of valuations and semigroups of fractionary ideal classes. Trans. Am. Math. Soc. 144 (1969), 427-439. | DOI | MR | JFM
[25] Tamoussit, A.: A note on the Krull dimension of rings between $D[X]$ and $ Int(D)$. Boll. Unione Mat. Ital. 14 (2021), 513-519. | DOI | MR | JFM
[26] Tartarone, F.: On the Krull dimension of $ Int(D)$ when $D$ is a pullback. Commutative Ring Theory Lecture Notes in Pure Applied Mathematics 185. Marcel Dekker, New York (1997), 457-470. | MR | JFM
[27] Yeramian, J.: Anneaux de Bhargava: Thèse de Doctorat. Université Paul Cézanne, Marseille (2004), French. | MR
[28] Yeramian, J.: Anneaux de Bhargava. Commun. Algebra 32 (2004), 3043-3069 French. | DOI | MR | JFM
[29] Yeramian, J.: Prime ideals of Bhargava domains. J. Pure Appl. Algebra 213 (2009), 1013-1025. | DOI | MR | JFM
[30] Zafrullah, M.: The $D+XD_S[X]$ construction from GCD-domains. J. Pure Appl. Algebra 50 (1988), 93-107. | DOI | MR | JFM
Cité par Sources :