Keywords: filter; $g$-small; $g$-supplemented; lattice
@article{10_21136_MB_2022_0124_20,
author = {Ebrahimi Atani, Shahabaddin},
title = {$G$-supplemented property in the lattices},
journal = {Mathematica Bohemica},
pages = {525--545},
year = {2022},
volume = {147},
number = {4},
doi = {10.21136/MB.2022.0124-20},
mrnumber = {4512172},
zbl = {07655825},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0124-20/}
}
Ebrahimi Atani, Shahabaddin. $G$-supplemented property in the lattices. Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 525-545. doi: 10.21136/MB.2022.0124-20
[1] Birkhoff, G.: Lattice Theory. Colloquium Publications 25. AMS, Providence (1967). | DOI | MR | JFM
[2] Călugăreanu, G.: Lattice Concepts of Module Theory. Kluwer Texts in the Mathematical Sciences 22. Kluwer Academic Publishers, Dordrecht (2000). | DOI | MR | JFM
[3] Clark, J., Lomp, C., Vanaja, N., Wisbauer, R.: Lifting Modules: Supplements and Projectivity in Module Theory. Frontiers in Mathematics. Birkhäuser, Basel (2006). | DOI | MR | JFM
[4] Atani, S. Ebrahimi, Chenari, M.: Supplemented property in the lattices. Serdica Math. J. 46 (2020), 73-88. | MR
[5] Atani, S. Ebrahimi, Hesari, S. Dolati Pish, Khoramdel, M., Bazari, M. Sedghi Shanbeh: A semiprime filter-based identity-summand graph of a lattice. Matematiche 73 (2018), 297-318. | DOI | MR | JFM
[6] Atani, S. Ebrahimi, Bazari, M. Sedghi Shanbeh: On 2-absorbing filters of lattices. Discuss. Math., Gen. Algebra Appl. 36 (2016), 157-168. | DOI | MR | JFM
[7] Kasch, F., Mares, E. A.: Eine Kennzeichnung semi-perfekter Moduln. Nagoya Math. J. 27 (1966), 525-529. | DOI | MR | JFM
[8] Koşar, B., Nebiyev, C., Sökmez, N.: $g$-supplemented modules. Ukr. Math. J. 67 (2015), 975-980. | DOI | MR | JFM
[9] Mohamed, S. H., Müller, B. J.: Continuous and Discrete Modules. London Mathematical Society Lecture Note Series 147. Cambridge University Press, London (1990). | DOI | MR | JFM
[10] Quynh, T. C., Tin, P. H.: Some properties of $e$-supplemented and $e$-lifting modules. Vietnam J. Math. 41 (2013), 303-312. | DOI | MR | JFM
[11] Wisbauer, R.: Foundations of Module and Ring Theory: A Handbook for Study and Research. Algebra, Logic and Applications 3. Gordon and Breach, Philadelphia (1991). | MR | JFM
[12] Zhou, D. X., Zhang, X. R.: Small-essential submodules and Morita duality. Southeast Asian Bull. Math. 35 (2011), 1051-1062. | MR | JFM
[13] Zöschinger, H.: Komplementierte Moduln über Dedekindringen. J. Algebra 29 (1974), 42-56 German. | DOI | MR | JFM
Cité par Sources :