$G$-supplemented property in the lattices
Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 525-545
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $L$ be a lattice with the greatest element $1$. Following the concept of generalized small subfilter, we define $g$-supplemented filters and investigate the basic properties and possible structures of these filters.
Let $L$ be a lattice with the greatest element $1$. Following the concept of generalized small subfilter, we define $g$-supplemented filters and investigate the basic properties and possible structures of these filters.
DOI : 10.21136/MB.2022.0124-20
Classification : 06C05, 06C15
Keywords: filter; $g$-small; $g$-supplemented; lattice
@article{10_21136_MB_2022_0124_20,
     author = {Ebrahimi Atani, Shahabaddin},
     title = {$G$-supplemented property in the lattices},
     journal = {Mathematica Bohemica},
     pages = {525--545},
     year = {2022},
     volume = {147},
     number = {4},
     doi = {10.21136/MB.2022.0124-20},
     mrnumber = {4512172},
     zbl = {07655825},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0124-20/}
}
TY  - JOUR
AU  - Ebrahimi Atani, Shahabaddin
TI  - $G$-supplemented property in the lattices
JO  - Mathematica Bohemica
PY  - 2022
SP  - 525
EP  - 545
VL  - 147
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0124-20/
DO  - 10.21136/MB.2022.0124-20
LA  - en
ID  - 10_21136_MB_2022_0124_20
ER  - 
%0 Journal Article
%A Ebrahimi Atani, Shahabaddin
%T $G$-supplemented property in the lattices
%J Mathematica Bohemica
%D 2022
%P 525-545
%V 147
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0124-20/
%R 10.21136/MB.2022.0124-20
%G en
%F 10_21136_MB_2022_0124_20
Ebrahimi Atani, Shahabaddin. $G$-supplemented property in the lattices. Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 525-545. doi: 10.21136/MB.2022.0124-20

[1] Birkhoff, G.: Lattice Theory. Colloquium Publications 25. AMS, Providence (1967). | DOI | MR | JFM

[2] Călugăreanu, G.: Lattice Concepts of Module Theory. Kluwer Texts in the Mathematical Sciences 22. Kluwer Academic Publishers, Dordrecht (2000). | DOI | MR | JFM

[3] Clark, J., Lomp, C., Vanaja, N., Wisbauer, R.: Lifting Modules: Supplements and Projectivity in Module Theory. Frontiers in Mathematics. Birkhäuser, Basel (2006). | DOI | MR | JFM

[4] Atani, S. Ebrahimi, Chenari, M.: Supplemented property in the lattices. Serdica Math. J. 46 (2020), 73-88. | MR

[5] Atani, S. Ebrahimi, Hesari, S. Dolati Pish, Khoramdel, M., Bazari, M. Sedghi Shanbeh: A semiprime filter-based identity-summand graph of a lattice. Matematiche 73 (2018), 297-318. | DOI | MR | JFM

[6] Atani, S. Ebrahimi, Bazari, M. Sedghi Shanbeh: On 2-absorbing filters of lattices. Discuss. Math., Gen. Algebra Appl. 36 (2016), 157-168. | DOI | MR | JFM

[7] Kasch, F., Mares, E. A.: Eine Kennzeichnung semi-perfekter Moduln. Nagoya Math. J. 27 (1966), 525-529. | DOI | MR | JFM

[8] Koşar, B., Nebiyev, C., Sökmez, N.: $g$-supplemented modules. Ukr. Math. J. 67 (2015), 975-980. | DOI | MR | JFM

[9] Mohamed, S. H., Müller, B. J.: Continuous and Discrete Modules. London Mathematical Society Lecture Note Series 147. Cambridge University Press, London (1990). | DOI | MR | JFM

[10] Quynh, T. C., Tin, P. H.: Some properties of $e$-supplemented and $e$-lifting modules. Vietnam J. Math. 41 (2013), 303-312. | DOI | MR | JFM

[11] Wisbauer, R.: Foundations of Module and Ring Theory: A Handbook for Study and Research. Algebra, Logic and Applications 3. Gordon and Breach, Philadelphia (1991). | MR | JFM

[12] Zhou, D. X., Zhang, X. R.: Small-essential submodules and Morita duality. Southeast Asian Bull. Math. 35 (2011), 1051-1062. | MR | JFM

[13] Zöschinger, H.: Komplementierte Moduln über Dedekindringen. J. Algebra 29 (1974), 42-56 German. | DOI | MR | JFM

Cité par Sources :