Keywords: $CS$-module; weak $CS$-module; uniform dimension; ascending chain on essential submodules; $C_{11}$-module; $FI$-extending; weak $FI$-extending
@article{10_21136_MB_2022_0100_21,
author = {Tak{\i}l Mutlu, Figen and Tercan, Adnan and Ya\c{s}ar, Ramazan},
title = {Eventually semisimple weak $FI$-extending modules},
journal = {Mathematica Bohemica},
pages = {211--222},
year = {2023},
volume = {148},
number = {2},
doi = {10.21136/MB.2022.0100-21},
mrnumber = {4585577},
zbl = {07729573},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0100-21/}
}
TY - JOUR AU - Takıl Mutlu, Figen AU - Tercan, Adnan AU - Yaşar, Ramazan TI - Eventually semisimple weak $FI$-extending modules JO - Mathematica Bohemica PY - 2023 SP - 211 EP - 222 VL - 148 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0100-21/ DO - 10.21136/MB.2022.0100-21 LA - en ID - 10_21136_MB_2022_0100_21 ER -
%0 Journal Article %A Takıl Mutlu, Figen %A Tercan, Adnan %A Yaşar, Ramazan %T Eventually semisimple weak $FI$-extending modules %J Mathematica Bohemica %D 2023 %P 211-222 %V 148 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0100-21/ %R 10.21136/MB.2022.0100-21 %G en %F 10_21136_MB_2022_0100_21
Takıl Mutlu, Figen; Tercan, Adnan; Yaşar, Ramazan. Eventually semisimple weak $FI$-extending modules. Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 211-222. doi: 10.21136/MB.2022.0100-21
[1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. Graduate Texts in Mathematics 13. Springer, New York (1992). | DOI | MR | JFM
[2] Armendariz, E. P.: Rings with DCC on essential left ideals. Commun. Algebra 8 (1980), 299-308. | DOI | MR | JFM
[3] Birkenmeier, G. F., Călugăreanu, G., Fuchs, L., Goeters, H. P.: The fully invariant extending property for abelian groups. Commun. Algebra 29 (2001), 673-685. | DOI | MR | JFM
[4] Birkenmeier, G. F., Müller, B. J., Rizvi, S. T.: Modules in which every fully invariant submodule is essential in a direct summand. Commun. Algebra 30 (2002), 1395-1415. | DOI | MR | JFM
[5] Birkenmeier, G. F., Park, J. K., Rizvi, S. T.: Extensions of Rings and Modules. Birkhäuser, New York (2013). | DOI | MR | JFM
[6] Camillo, V., Yousif, M. F.: CS-modules with ACC or DCC on essential submodules. Commun. Algebra 19 (1991), 655-662. | DOI | MR | JFM
[7] Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R.: Extending Modules. Pitman Research Notes in Mathematics Series 313. Longman, Harlow (1994),\99999DOI99999 10.1201/9780203756331 . | MR | JFM
[8] Goodearl, K. R.: Singular torsion and the splitting properties. Mem. Am. Math. Soc. 124 (1972), 89 pages. | DOI | MR | JFM
[9] Goodearl, K. R.: Ring Theory: Nonsingular Rings and Modules. Pure and Applied Mathematics, Marcel Dekker 33. Marcel Dekker, New York (1976). | MR | JFM
[10] Kaplansky, I.: Infinite Abelian Groups. University of Michigan Press, Ann Arbor (1969). | MR | JFM
[11] Smith, P. F.: CS-modules and weak CS-modules. Non-Commutative Ring Theory Lecture Notes in Mathematics 1448. Springer, Berlin (1990), 99-115. | DOI | MR | JFM
[12] Smith, P. F.: Modules with many direct summands. Osaka J. Math. 27 (1990), 253-264. | MR | JFM
[13] Smith, P. F., Tercan, A.: Generalizations of CS-modules. Commun. Algebra 21 (1993), 1809-1847. | DOI | MR | JFM
[14] Smith, P. F., Tercan, A.: Direct summands of modules which satisfy $(C_{11})$. Algebra Colloq. 11 (2004), 231-237. | MR | JFM
[15] Tercan, A.: On certain CS-rings. Commun. Algebra 23 (1995), 405-419. | DOI | MR | JFM
[16] Tercan, A.: Weak $(C_{11}^+)$ modules with ACC or DCC on essential submodules. Taiwanese J. Math. 5 (2001), 731-738. | DOI | MR | JFM
[17] Tercan, A.: Eventually weak $(C_{11})$ modules and matrix $(C_{11})$ rings. Southeast Asian Bull. Math. 27 (2003), 729-737. | MR | JFM
[18] Tercan, A., Yaşar, R.: Weak $FI$-extending modules with ACC or DCC on essential submodules. Kyungpook J. Math. 61 (2021), 239-248. | DOI | MR | JFM
[19] Tercan, A., Yücel, C. C.: Module Theory, Extending Modules and Generalizations. Frontiers in Mathematics. Birkhäuser, Basel (2016). | DOI | MR | JFM
[20] Yaşar, R.: Modules in which semisimple fully invariant submodules are essential in summands. Turk. J. Math. 43 (2019), 2327-2336. | DOI | MR | JFM
Cité par Sources :