Eventually semisimple weak $FI$-extending modules
Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 211-222
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article, we study modules with the weak $FI$-extending property. We prove that if $M$ satisfies weak $FI$-extending, pseudo duo, $C_3$ properties and $M/{\rm Soc} M$ has finite uniform dimension then $M$ decomposes into a direct sum of a semisimple submodule and a submodule of finite uniform dimension. In particular, if $M$ satisfies the weak $FI$-extending, pseudo duo, $C_3$ properties and ascending (or descending) chain condition on essential submodules then $M=M_1\oplus M_2$ for some semisimple submodule $M_1$ and Noetherian (or Artinian, respectively) submodule $M_2$. Moreover, we show that a nonsingular weak $CS$ (or weak $C_{11}^*$, or weak $FI$) module has a direct summand which essentially contains the socle of the module and is a $CS$ (or $C_{11}$, or $FI$-extending, respectively) module.
In this article, we study modules with the weak $FI$-extending property. We prove that if $M$ satisfies weak $FI$-extending, pseudo duo, $C_3$ properties and $M/{\rm Soc} M$ has finite uniform dimension then $M$ decomposes into a direct sum of a semisimple submodule and a submodule of finite uniform dimension. In particular, if $M$ satisfies the weak $FI$-extending, pseudo duo, $C_3$ properties and ascending (or descending) chain condition on essential submodules then $M=M_1\oplus M_2$ for some semisimple submodule $M_1$ and Noetherian (or Artinian, respectively) submodule $M_2$. Moreover, we show that a nonsingular weak $CS$ (or weak $C_{11}^*$, or weak $FI$) module has a direct summand which essentially contains the socle of the module and is a $CS$ (or $C_{11}$, or $FI$-extending, respectively) module.
DOI : 10.21136/MB.2022.0100-21
Classification : 16D50, 16D80
Keywords: $CS$-module; weak $CS$-module; uniform dimension; ascending chain on essential submodules; $C_{11}$-module; $FI$-extending; weak $FI$-extending
@article{10_21136_MB_2022_0100_21,
     author = {Tak{\i}l Mutlu, Figen and Tercan, Adnan and Ya\c{s}ar, Ramazan},
     title = {Eventually semisimple weak $FI$-extending modules},
     journal = {Mathematica Bohemica},
     pages = {211--222},
     year = {2023},
     volume = {148},
     number = {2},
     doi = {10.21136/MB.2022.0100-21},
     mrnumber = {4585577},
     zbl = {07729573},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0100-21/}
}
TY  - JOUR
AU  - Takıl Mutlu, Figen
AU  - Tercan, Adnan
AU  - Yaşar, Ramazan
TI  - Eventually semisimple weak $FI$-extending modules
JO  - Mathematica Bohemica
PY  - 2023
SP  - 211
EP  - 222
VL  - 148
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0100-21/
DO  - 10.21136/MB.2022.0100-21
LA  - en
ID  - 10_21136_MB_2022_0100_21
ER  - 
%0 Journal Article
%A Takıl Mutlu, Figen
%A Tercan, Adnan
%A Yaşar, Ramazan
%T Eventually semisimple weak $FI$-extending modules
%J Mathematica Bohemica
%D 2023
%P 211-222
%V 148
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0100-21/
%R 10.21136/MB.2022.0100-21
%G en
%F 10_21136_MB_2022_0100_21
Takıl Mutlu, Figen; Tercan, Adnan; Yaşar, Ramazan. Eventually semisimple weak $FI$-extending modules. Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 211-222. doi: 10.21136/MB.2022.0100-21

[1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. Graduate Texts in Mathematics 13. Springer, New York (1992). | DOI | MR | JFM

[2] Armendariz, E. P.: Rings with DCC on essential left ideals. Commun. Algebra 8 (1980), 299-308. | DOI | MR | JFM

[3] Birkenmeier, G. F., Călugăreanu, G., Fuchs, L., Goeters, H. P.: The fully invariant extending property for abelian groups. Commun. Algebra 29 (2001), 673-685. | DOI | MR | JFM

[4] Birkenmeier, G. F., Müller, B. J., Rizvi, S. T.: Modules in which every fully invariant submodule is essential in a direct summand. Commun. Algebra 30 (2002), 1395-1415. | DOI | MR | JFM

[5] Birkenmeier, G. F., Park, J. K., Rizvi, S. T.: Extensions of Rings and Modules. Birkhäuser, New York (2013). | DOI | MR | JFM

[6] Camillo, V., Yousif, M. F.: CS-modules with ACC or DCC on essential submodules. Commun. Algebra 19 (1991), 655-662. | DOI | MR | JFM

[7] Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R.: Extending Modules. Pitman Research Notes in Mathematics Series 313. Longman, Harlow (1994),\99999DOI99999 10.1201/9780203756331 . | MR | JFM

[8] Goodearl, K. R.: Singular torsion and the splitting properties. Mem. Am. Math. Soc. 124 (1972), 89 pages. | DOI | MR | JFM

[9] Goodearl, K. R.: Ring Theory: Nonsingular Rings and Modules. Pure and Applied Mathematics, Marcel Dekker 33. Marcel Dekker, New York (1976). | MR | JFM

[10] Kaplansky, I.: Infinite Abelian Groups. University of Michigan Press, Ann Arbor (1969). | MR | JFM

[11] Smith, P. F.: CS-modules and weak CS-modules. Non-Commutative Ring Theory Lecture Notes in Mathematics 1448. Springer, Berlin (1990), 99-115. | DOI | MR | JFM

[12] Smith, P. F.: Modules with many direct summands. Osaka J. Math. 27 (1990), 253-264. | MR | JFM

[13] Smith, P. F., Tercan, A.: Generalizations of CS-modules. Commun. Algebra 21 (1993), 1809-1847. | DOI | MR | JFM

[14] Smith, P. F., Tercan, A.: Direct summands of modules which satisfy $(C_{11})$. Algebra Colloq. 11 (2004), 231-237. | MR | JFM

[15] Tercan, A.: On certain CS-rings. Commun. Algebra 23 (1995), 405-419. | DOI | MR | JFM

[16] Tercan, A.: Weak $(C_{11}^+)$ modules with ACC or DCC on essential submodules. Taiwanese J. Math. 5 (2001), 731-738. | DOI | MR | JFM

[17] Tercan, A.: Eventually weak $(C_{11})$ modules and matrix $(C_{11})$ rings. Southeast Asian Bull. Math. 27 (2003), 729-737. | MR | JFM

[18] Tercan, A., Yaşar, R.: Weak $FI$-extending modules with ACC or DCC on essential submodules. Kyungpook J. Math. 61 (2021), 239-248. | DOI | MR | JFM

[19] Tercan, A., Yücel, C. C.: Module Theory, Extending Modules and Generalizations. Frontiers in Mathematics. Birkhäuser, Basel (2016). | DOI | MR | JFM

[20] Yaşar, R.: Modules in which semisimple fully invariant submodules are essential in summands. Turk. J. Math. 43 (2019), 2327-2336. | DOI | MR | JFM

Cité par Sources :