Investigating generalized quaternions with dual-generalized complex numbers
Mathematica Bohemica, Tome 148 (2023) no. 3, pp. 329-348.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We aim to introduce generalized quaternions with dual-generalized complex number coefficients for all real values $\alpha $, $\beta $ and $\mathfrak {p}$. Furthermore, the algebraic structures, properties and matrix forms are expressed as generalized quaternions and dual-generalized complex numbers. Finally, based on their matrix representations, the multiplication of these quaternions is restated and numerical examples are given.
DOI : 10.21136/MB.2022.0096-21
Classification : 11R52, 15B33
Keywords: generalized quaternion; dual-generalized complex number; matrix representation
@article{10_21136_MB_2022_0096_21,
     author = {G\"urses, Nurten and \c{S}ent\"urk, G\"uls\"um Yeliz and Y\"uce, Salim},
     title = {Investigating generalized quaternions with dual-generalized complex numbers},
     journal = {Mathematica Bohemica},
     pages = {329--348},
     publisher = {mathdoc},
     volume = {148},
     number = {3},
     year = {2023},
     doi = {10.21136/MB.2022.0096-21},
     mrnumber = {4628616},
     zbl = {07729580},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0096-21/}
}
TY  - JOUR
AU  - Gürses, Nurten
AU  - Şentürk, Gülsüm Yeliz
AU  - Yüce, Salim
TI  - Investigating generalized quaternions with dual-generalized complex numbers
JO  - Mathematica Bohemica
PY  - 2023
SP  - 329
EP  - 348
VL  - 148
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0096-21/
DO  - 10.21136/MB.2022.0096-21
LA  - en
ID  - 10_21136_MB_2022_0096_21
ER  - 
%0 Journal Article
%A Gürses, Nurten
%A Şentürk, Gülsüm Yeliz
%A Yüce, Salim
%T Investigating generalized quaternions with dual-generalized complex numbers
%J Mathematica Bohemica
%D 2023
%P 329-348
%V 148
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0096-21/
%R 10.21136/MB.2022.0096-21
%G en
%F 10_21136_MB_2022_0096_21
Gürses, Nurten; Şentürk, Gülsüm Yeliz; Yüce, Salim. Investigating generalized quaternions with dual-generalized complex numbers. Mathematica Bohemica, Tome 148 (2023) no. 3, pp. 329-348. doi : 10.21136/MB.2022.0096-21. http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0096-21/

Cité par Sources :