Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_21136_MB_2022_0096_21, author = {G\"urses, Nurten and \c{S}ent\"urk, G\"uls\"um Yeliz and Y\"uce, Salim}, title = {Investigating generalized quaternions with dual-generalized complex numbers}, journal = {Mathematica Bohemica}, pages = {329--348}, publisher = {mathdoc}, volume = {148}, number = {3}, year = {2023}, doi = {10.21136/MB.2022.0096-21}, mrnumber = {4628616}, zbl = {07729580}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0096-21/} }
TY - JOUR AU - Gürses, Nurten AU - Şentürk, Gülsüm Yeliz AU - Yüce, Salim TI - Investigating generalized quaternions with dual-generalized complex numbers JO - Mathematica Bohemica PY - 2023 SP - 329 EP - 348 VL - 148 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0096-21/ DO - 10.21136/MB.2022.0096-21 LA - en ID - 10_21136_MB_2022_0096_21 ER -
%0 Journal Article %A Gürses, Nurten %A Şentürk, Gülsüm Yeliz %A Yüce, Salim %T Investigating generalized quaternions with dual-generalized complex numbers %J Mathematica Bohemica %D 2023 %P 329-348 %V 148 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0096-21/ %R 10.21136/MB.2022.0096-21 %G en %F 10_21136_MB_2022_0096_21
Gürses, Nurten; Şentürk, Gülsüm Yeliz; Yüce, Salim. Investigating generalized quaternions with dual-generalized complex numbers. Mathematica Bohemica, Tome 148 (2023) no. 3, pp. 329-348. doi : 10.21136/MB.2022.0096-21. http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0096-21/
Cité par Sources :