Investigating generalized quaternions with dual-generalized complex numbers
Mathematica Bohemica, Tome 148 (2023) no. 3, pp. 329-348
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We aim to introduce generalized quaternions with dual-generalized complex number coefficients for all real values $\alpha $, $\beta $ and $\mathfrak {p}$. Furthermore, the algebraic structures, properties and matrix forms are expressed as generalized quaternions and dual-generalized complex numbers. Finally, based on their matrix representations, the multiplication of these quaternions is restated and numerical examples are given.
We aim to introduce generalized quaternions with dual-generalized complex number coefficients for all real values $\alpha $, $\beta $ and $\mathfrak {p}$. Furthermore, the algebraic structures, properties and matrix forms are expressed as generalized quaternions and dual-generalized complex numbers. Finally, based on their matrix representations, the multiplication of these quaternions is restated and numerical examples are given.
DOI : 10.21136/MB.2022.0096-21
Classification : 11R52, 15B33
Keywords: generalized quaternion; dual-generalized complex number; matrix representation
@article{10_21136_MB_2022_0096_21,
     author = {G\"urses, Nurten and \c{S}ent\"urk, G\"uls\"um Yeliz and Y\"uce, Salim},
     title = {Investigating generalized quaternions with dual-generalized complex numbers},
     journal = {Mathematica Bohemica},
     pages = {329--348},
     year = {2023},
     volume = {148},
     number = {3},
     doi = {10.21136/MB.2022.0096-21},
     mrnumber = {4628616},
     zbl = {07729580},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0096-21/}
}
TY  - JOUR
AU  - Gürses, Nurten
AU  - Şentürk, Gülsüm Yeliz
AU  - Yüce, Salim
TI  - Investigating generalized quaternions with dual-generalized complex numbers
JO  - Mathematica Bohemica
PY  - 2023
SP  - 329
EP  - 348
VL  - 148
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0096-21/
DO  - 10.21136/MB.2022.0096-21
LA  - en
ID  - 10_21136_MB_2022_0096_21
ER  - 
%0 Journal Article
%A Gürses, Nurten
%A Şentürk, Gülsüm Yeliz
%A Yüce, Salim
%T Investigating generalized quaternions with dual-generalized complex numbers
%J Mathematica Bohemica
%D 2023
%P 329-348
%V 148
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0096-21/
%R 10.21136/MB.2022.0096-21
%G en
%F 10_21136_MB_2022_0096_21
Gürses, Nurten; Şentürk, Gülsüm Yeliz; Yüce, Salim. Investigating generalized quaternions with dual-generalized complex numbers. Mathematica Bohemica, Tome 148 (2023) no. 3, pp. 329-348. doi: 10.21136/MB.2022.0096-21

[1] Akar, M., Yüce, S., Şahin, S.: On the dual hyperbolic numbers and the complex hyperbolic numbers. J. Computer Sci. Comput. Math. 8 (2018), 1-6. | DOI

[2] Alfsmann, D.: On families of $2^N$-dimensional hypercomplex algebras suitable for digital signal processing. 14th European Signal Processing Conference IEEE, Piscataway (2006), 1-4.

[3] Aslan, S., Bekar, M., Yaylı, Y.: Hyper-dual split quaternions and rigid body motion. J. Geom. Phys. 158 (2020), Article ID 103876, 12 pages. | DOI | MR | JFM

[4] Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P.: The Mathematics of Minkowski Space-Time: With an Introduction to Commutative Hypercomplex Numbers. Frontiers in Mathematics. Birkhäuser, Basel (2008). | DOI | MR | JFM

[5] Catoni, F., Cannata, R., Catoni, V., Zampetti, P.: Two-dimensional hypercomplex numbers and related trigonometries and geometries. Adv. Appl. Clifford Algebr. 14 (2004), 47-68. | DOI | MR | JFM

[6] Catoni, F., Cannata, R., Catoni, V., Zampetti, P.: $N$-dimensional geometries generated by hypercomplex numbers. Adv. Appl. Clifford Algebr. 15 (2005), 1-25. | DOI | MR | JFM

[7] Cheng, H. H., Thompson, S.: Dual polynomials and complex dual numbers for analysis of spatial mechanisms. Design Engineering Technical Conferences and Computers in Engineering. Conference ASME 1996 ASME, Irvine (1996), 19-22. | DOI

[8] Cheng, H. H., Thompson, S.: Singularity analysis of spatial mechanisms using dual polynomials and complex dual numbers. J. Mech. Des. 121 (1999), 200-205. | DOI

[9] Clifford, W. K.: Mathematical Papers. Chelsea Publishing, New York (1968). | MR

[10] Cockle, J.: On a new imaginary in algebra. Phil. Mag. (3) 34 (1849), 37-47. | DOI

[11] Cockle, J.: On systems of algebra involving more than one imaginary; and on equations of the fifth degree. Phil. Mag. (3) 35 (1849), 434-437. | DOI

[12] Cohen, A., Shoham, M.: Principle of transference: An extension to hyper-dual numbers. Mech. Mach. Theory 125 (2018), 101-110. | DOI

[13] Dickson, L. E.: On the theory of numbers and generalized quaternions. Am. J. Math. 46 (1924), 1-16 \99999JFM99999 50.0094.02. | DOI | MR

[14] Fike, J. A., Alonso, J. J.: The development of hyper-dual numbers for exact second-derivative calculations. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition American Institute of Aeronautics and Astronautics, New York (2011), 1-17. | DOI

[15] Fike, J. A., Alonso, J. J.: Automatic differentiation through the use of hyper-dual numbers for second derivatives. Recent Advances in Algorithmic Differentiation Lecture Notes in Computational Science and Engineering 87. Springer, Berlin (2012), 163-173. | DOI | MR | JFM

[16] Fjelstad, P.: Extending special relativity via the perplex numbers. Am. J. Phys. 54 (1986), 416-422. | DOI | MR

[17] Fjelstad, P., Gal, G. S.: $n$-dimensional hyperbolic complex numbers. Adv. Appl. Clifford Algebr. 8 (1998), 47-68. | DOI | MR | JFM

[18] Griffiths, L. W.: Generalized quaternion algebras and the theory of numbers. Am. J. Math. 50 (1928), 303-314 \99999JFM99999 54.0164.01. | DOI | MR

[19] Gürses, N., Şentürk, G. Y., Yüce, S.: A study on dual-generalized complex and hyperbolic-generalized complex numbers. Gazi Univ. J. Sci. 34 (2021), 180-194. | DOI

[20] Hamilton, W. R.: On quaternions; or on a new system of imaginaries in algebra. Phil. Mag. (3) 25 (1844), 10-13. | DOI

[21] Hamilton, W. R.: Lectures on Quaternions. Hodges and Smith, Dublin (1853).

[22] Hamilton, W. R.: Elements of Quaternions. Chelsea Publishing, New York (1969). | DOI | MR

[23] Harkin, A. A., Harkin, J. B.: Geometry of generalized complex numbers. Math. Mag. 77 (2004), 118-129. | DOI | MR | JFM

[24] Jafari, M., Yayli, Y.: Generalized quaternions and their algebratic properties. Commun. Fac. Sci. Univ. Ank., Ser. A1 64 (2015), 15-27. | DOI | MR

[25] Kantor, I. L., Solodovnikov, A. S.: Hypercomplex Numbers: An Elementary Introduction to Algebras. Springer, New York (1989). | MR | JFM

[26] Majern{'ık, V.: Multicomponent number systems. Acta Phys. Polon. A 90 (1996), 491-498. | DOI | MR

[27] Mamagani, A. B., Jafari, M.: On properties of generalized quaternion algebra. J. Novel Appl. Sci. 2 (2013), 683-689.

[28] Messelmi, F.: Dual-complex numbers and their holomorphic functions. Available at https://hal.archives-ouvertes.fr/hal-01114178 (2015), 11 pages.

[29] Pennestr{\`ı, E., Stefanelli, R.: Linear algebra and numerical algorithms using dual numbers. Multibody Syst. Dyn. 18 (2007), 323-344. | DOI | MR | JFM

[30] Pottman, H., Wallner, J.: Computational Line Geometry. Mathematics and Visualization. Springer, Berlin (2001). | DOI | MR | JFM

[31] Price, G. B.: An Introduction to Multicomplex Spaces and Functions. Pure and Applied Mathematics 140. Marcel Dekker, New York (1991). | DOI | MR | JFM

[32] Rochon, D., Shapiro, M.: On algebraic properties of bicomplex and hyperbolic numbers. An. Univ. Oradea, Fasc. Mat. 11 (2004), 71-110. | MR | JFM

[33] Savin, D., Flaut, C., Ciobanu, C.: Some properties of the symbol algebras. Carpathian J. Math. 25 (2009), 239-245. | MR | JFM

[34] Sobczyk, G.: The hyperbolic number plane. Coll. Math. J. 26 (1995), 268-280. | DOI

[35] Study, E.: Geometrie der Dynamen: Die Zusammensetzung von Kräften und verwandte Gegenstände der Geometrie. B. G. Teubner, Leipzig (1903), German \99999JFM99999 33.0691.01.

[36] Toyoshima, H.: Computationally efficient bicomplex multipliers for digital signal processing. IEICE Trans. Inform. Syst. E81-D (1998), 236-238.

[37] Veldsman, S.: Generalized complex numbers over near-fields. Quaest. Math. 42 (2019), 181-200. | DOI | MR | JFM

[38] Yaglom, I. M.: Complex Numbers in Geometry. Academic Press, New York (1968). | MR | JFM

[39] Yaglom, I. M.: A Simple Non-Euclidean Geometry and Its Physical Basis: An Elementary Account of Galilean Geometry and the Galilean Principle of Relativity. Springer, New York (1979). | DOI | MR | JFM

Cité par Sources :