Keywords: meet-distributive lattice; congruence-uniform lattice; canonical join complex; core label order; intersection property
@article{10_21136_MB_2022_0072_21,
author = {M\"uhle, Henri},
title = {Meet-distributive lattices have the intersection property},
journal = {Mathematica Bohemica},
pages = {95--104},
year = {2023},
volume = {148},
number = {1},
doi = {10.21136/MB.2022.0072-21},
mrnumber = {4536312},
zbl = {07655815},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0072-21/}
}
Mühle, Henri. Meet-distributive lattices have the intersection property. Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 95-104. doi: 10.21136/MB.2022.0072-21
[1] Adaricheva, K. V., Gorbunov, V. A., Tumanov, V. I.: Join-semidistributive lattices and convex geometries. Adv. Math. 173 (2003), 1-49. | DOI | MR | JFM
[2] Armstrong, D.: The sorting order on a Coxeter group. J. Comb. Theory, Ser. A 116 (2009), 1285-1305. | DOI | MR | JFM
[3] Bancroft, E.: The shard intersection order on permutations. Available at , 19 pages. | arXiv
[4] Barnard, E.: The canonical join complex. Electron. J. Comb. 26 (2019), Article ID P1.24, 25 pages. | DOI | MR | JFM
[5] Clifton, A., Dillery, P., Garver, A.: The canonical join complex for biclosed sets. Algebra Univers. 79 (2018), Article ID 84, 29 pages. | DOI | MR | JFM
[6] Dilworth, R. P.: Lattices with unique irreducible decompositions. Ann. Math. (2) 41 (1940), 771-777. | DOI | MR | JFM
[7] Edelman, P. H.: Meet-distributive lattices and the anti-exchange closure. Algebra Univers. 10 (1980), 290-299. | DOI | MR | JFM
[8] Freese, R., Ježek, J., Nation, J. B.: Free Lattices. Mathematical Surveys and Monographs 42. American Mathematical Society, Providence (1995). | DOI | MR | JFM
[9] Garver, A., McConville, T.: Oriented flip graphs of polygonal subdivisions and noncrossing tree partitions. J. Comb. Theory, Ser. A 158 (2018), 126-175. | DOI | MR | JFM
[10] Garver, A., McConville, T.: Chapoton triangles for nonkissing complexes. Algebr. Comb. 3 (2020), 1331-1363. | DOI | MR | JFM
[11] Mühle, H.: The core label order of a congruence-uniform lattice. Algebra Univers. 80 (2019), Article ID 10, 22 pages. | DOI | MR | JFM
[12] Mühle, H.: Distributive lattices have the intersection property. Math. Bohem. 146 (2021), 7-17. | DOI | MR | JFM
[13] Mühle, H.: Noncrossing arc diagrams, Tamari lattices, and parabolic quotients of the symmetric group. Ann. Comb. 25 (2021), 307-344. | DOI | MR | JFM
[14] Petersen, T. K.: On the shard intersection order of a Coxeter group. SIAM J. Discrete Math. 27 (2013), 1880-1912. | DOI | MR | JFM
[15] Reading, N.: Noncrossing partitions and the shard intersection order. J. Algebr. Comb. 33 (2011), 483-530. | DOI | MR | JFM
[16] Reading, N.: Noncrossing arc diagrams and canonical join representations. SIAM J. Discrete Math. 29 (2015), 736-750. | DOI | MR | JFM
[17] Reading, N.: Lattice theory of the poset of regions. Lattice Theory: Special Topics and Applications Birkhäuser, Basel (2016), 399-487. | DOI | MR | JFM
[18] Whitman, P. M.: Free lattices. Ann. Math. (2) 42 (1941), 325-330. | DOI | MR | JFM
[19] Whitman, P. M.: Free lattices. II. Ann. Math. (2) 43 (1942), 104-115. | DOI | MR | JFM
Cité par Sources :