Keywords: variable exponent; existence; variational methods; Dirichlet problem
@article{10_21136_MB_2022_0069_21,
author = {Kim, Sungchol and Ri, Dukman},
title = {Existence of weak solutions for elliptic {Dirichlet} problems with variable exponent},
journal = {Mathematica Bohemica},
pages = {283--302},
year = {2023},
volume = {148},
number = {3},
doi = {10.21136/MB.2022.0069-21},
mrnumber = {4628614},
zbl = {07729578},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0069-21/}
}
TY - JOUR AU - Kim, Sungchol AU - Ri, Dukman TI - Existence of weak solutions for elliptic Dirichlet problems with variable exponent JO - Mathematica Bohemica PY - 2023 SP - 283 EP - 302 VL - 148 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0069-21/ DO - 10.21136/MB.2022.0069-21 LA - en ID - 10_21136_MB_2022_0069_21 ER -
%0 Journal Article %A Kim, Sungchol %A Ri, Dukman %T Existence of weak solutions for elliptic Dirichlet problems with variable exponent %J Mathematica Bohemica %D 2023 %P 283-302 %V 148 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0069-21/ %R 10.21136/MB.2022.0069-21 %G en %F 10_21136_MB_2022_0069_21
Kim, Sungchol; Ri, Dukman. Existence of weak solutions for elliptic Dirichlet problems with variable exponent. Mathematica Bohemica, Tome 148 (2023) no. 3, pp. 283-302. doi: 10.21136/MB.2022.0069-21
[1] Boccardo, L., Dacorogna, B.: A characterization of pseudo-monotone differential operators in divergence form. Commun. Partial Differ. Equations 9 (1984), 1107-1117. | DOI | MR | JFM
[2] Bogachev, V. I.: Measure Theory. Volume I. Springer, Berlin (2007). | DOI | MR | JFM
[3] Bonanno, G., Chinn{\`ı, A.: Existence and multiplicity of weak solutions for elliptic Dirichlet problems with variable exponent. J. Math. Anal. Appl. 418 (2014), 812-827. | DOI | MR | JFM
[4] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66 (2006), 1383-1406. | DOI | MR | JFM
[5] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013). | DOI | MR | JFM
[6] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011). | DOI | MR | JFM
[7] Fan, X.: On the sub-supersolution method for $p(x)$-Laplacian equations. J. Math. Anal. Appl. 330 (2007), 665-682. | DOI | MR | JFM
[8] Fan, X.: Remarks on eigenvalue problems involving the $p(x)$-Laplacian. J. Math. Anal. Appl. 352 (2009), 85-98. | DOI | MR | JFM
[9] Fan, X.: Existence and uniqueness for the $p(x)$-Laplacian-Dirichlet problems. Math. Nachr. 284 (2011), 1435-1445. | DOI | MR | JFM
[10] Fan, X., Shen, J., Zhao, D.: Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$. J. Math. Anal. Appl. 262 (2001), 749-760. | DOI | MR | JFM
[11] Fan, X., Zhang, Q.: Existence of solutions for $p(x)$-Laplacian Dirichlet problem. Nonlinear Anal., Theory Methods Appl., Ser. A 52 (2003), 1843-1852. | DOI | MR | JFM
[12] Fan, X., Zhang, Q., Zhao, D.: Eigenvalues of $p(x)$-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302 (2005), 306-317. | DOI | MR | JFM
[13] Fu, Y., Yang, M.: Existence of solutions for quasilinear elliptic systems in divergence form with variable growth. J. Inequal. Appl. 2014 (2014), Article ID 23, 16 pages. | DOI | MR | JFM
[14] Fu, Y., Yu, M.: The Dirichlet problem of higher order quasilinear elliptic equation. J. Math. Anal. Appl. 363 (2010), 679-689. | DOI | MR | JFM
[15] Galewski, M.: On the existence and stability of solutions for Dirichlet problem with $p(x)$-Laplacian. J. Math. Anal. Appl. 326 (2007), 352-362. | DOI | MR | JFM
[16] Gossez, J.-P., Mustonen, V.: Pseudo-monotonicity and the Leray-Lions condition. Differ. Integral Equ. 6 (1993), 37-45. | MR | JFM
[17] Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 4551-4574. | DOI | MR | JFM
[18] Ji, C.: Remarks on the existence of three solutions for the $p(x)$-Laplacian equations. Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 2908-2915. | DOI | MR | JFM
[19] Kim, S., Ri, D.: Global boundedness and Hölder continuity of quasiminimizers with the general nonstandard growth conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 185 (2019), 170-192. | DOI | MR | JFM
[20] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. | DOI | MR | JFM
[21] Lions, J. L.: Quelques méthodes de résolution des problémes aux limites nonlinéaires. Etudes mathematiques. Dunod, Paris (1969), French. | MR | JFM
[22] Mashiyev, R. A., Cekic, B., Buhrii, O. M.: Existence of solutions for $p(x)$-Laplacian equations. Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Article ID 65, 13 pages. | DOI | MR | JFM
[23] Mihăilescu, M., Repovš, D.: On a PDE involving the $\mathcal{A}_{p(\cdot)}$-Laplace operator. Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 975-981. | DOI | MR | JFM
[24] Pucci, P., Zhang, Q.: Existence of entire solutions for a class of variable exponent elliptic equations. J. Differ. Equations 257 (2014), 1529-1566. | DOI | MR | JFM
[25] Rădulescu, V. D.: Nonlinear elliptic equations with variable exponent: Old and new. Nonlinear Anal., Theory Methods Appl., Ser. A 121 (2015), 336-369. | DOI | MR | JFM
[26] Roubíček, T.: Nonlinear Partial Differential Equations with Applications. ISNM. International Series of Numerical Mathematics 153. Birkhäuser, Basel (2005). | DOI | MR | JFM
[27] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics 1748. Springer, Berlin (2000). | DOI | MR | JFM
[28] Yu, C., Ri, D.: Global $L^{\infty}$-estimates and Hölder continuity of weak solutions to elliptic equations with the general nonstandard growth conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 156 (2017), 144-166. | DOI | MR | JFM
[29] Zeidler, E.: Nonlinear Functional Analysis and Its Applications III: Variational Methods and Optimization. Springer, New York (1985). | DOI | MR | JFM
[30] Zhang, A.: $p(x)$-Laplacian equations satisfying Cerami condition. J. Math. Anal. Appl. 337 (2008), 547-555. | DOI | MR | JFM
[31] Zhikov, V. V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR, Izv. 29 (1987), 33-66 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50 1986 675-710. | DOI | MR | JFM
[32] Zhou, Q.-M.: On the superlinear problems involving $p(x)$-Laplacian-like operators without AR-condition. Nonlinear Anal., Real World Appl. 21 (2015), 161-196. | DOI | MR | JFM
Cité par Sources :