Existence of weak solutions for elliptic Dirichlet problems with variable exponent
Mathematica Bohemica, Tome 148 (2023) no. 3, pp. 283-302
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
This paper presents several sufficient conditions for the existence of weak solutions to general nonlinear elliptic problems of the type $$ \begin{cases} -{\rm div} a(x, u, \nabla u)+b(x, u, \nabla u)=0 \text {in} \ \Omega ,\\ u=0 \text {on} \ \partial \Omega , \end{cases} $$ where $\Omega $ is a bounded domain of $\mathbb R^n$, $n\ge 2$. In particular, we do not require strict monotonicity of the principal part $a(x,z,\cdot )$, while the approach is based on the variational method and results of the variable exponent function spaces.
This paper presents several sufficient conditions for the existence of weak solutions to general nonlinear elliptic problems of the type $$ \begin{cases} -{\rm div} a(x, u, \nabla u)+b(x, u, \nabla u)=0 \text {in} \ \Omega ,\\ u=0 \text {on} \ \partial \Omega , \end{cases} $$ where $\Omega $ is a bounded domain of $\mathbb R^n$, $n\ge 2$. In particular, we do not require strict monotonicity of the principal part $a(x,z,\cdot )$, while the approach is based on the variational method and results of the variable exponent function spaces.
DOI :
10.21136/MB.2022.0069-21
Classification :
35J20, 35J25, 35J70
Keywords: variable exponent; existence; variational methods; Dirichlet problem
Keywords: variable exponent; existence; variational methods; Dirichlet problem
@article{10_21136_MB_2022_0069_21,
author = {Kim, Sungchol and Ri, Dukman},
title = {Existence of weak solutions for elliptic {Dirichlet} problems with variable exponent},
journal = {Mathematica Bohemica},
pages = {283--302},
year = {2023},
volume = {148},
number = {3},
doi = {10.21136/MB.2022.0069-21},
mrnumber = {4628614},
zbl = {07729578},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0069-21/}
}
TY - JOUR AU - Kim, Sungchol AU - Ri, Dukman TI - Existence of weak solutions for elliptic Dirichlet problems with variable exponent JO - Mathematica Bohemica PY - 2023 SP - 283 EP - 302 VL - 148 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0069-21/ DO - 10.21136/MB.2022.0069-21 LA - en ID - 10_21136_MB_2022_0069_21 ER -
%0 Journal Article %A Kim, Sungchol %A Ri, Dukman %T Existence of weak solutions for elliptic Dirichlet problems with variable exponent %J Mathematica Bohemica %D 2023 %P 283-302 %V 148 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0069-21/ %R 10.21136/MB.2022.0069-21 %G en %F 10_21136_MB_2022_0069_21
Kim, Sungchol; Ri, Dukman. Existence of weak solutions for elliptic Dirichlet problems with variable exponent. Mathematica Bohemica, Tome 148 (2023) no. 3, pp. 283-302. doi: 10.21136/MB.2022.0069-21
Cité par Sources :