Numerical radius inequalities for Hilbert $C^{*}$-modules
Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 547-566
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present a new method for studying the numerical radius of bounded operators on Hilbert $C^*$-modules. Our method enables us to obtain some new results and generalize some known theorems for bounded operators on Hilbert spaces to bounded adjointable operators on Hilbert $C^*$-module spaces.
We present a new method for studying the numerical radius of bounded operators on Hilbert $C^*$-modules. Our method enables us to obtain some new results and generalize some known theorems for bounded operators on Hilbert spaces to bounded adjointable operators on Hilbert $C^*$-module spaces.
DOI : 10.21136/MB.2022.0066-21
Classification : 46C05, 47A12, 47C10
Keywords: numerical radius; inner product space; $C^*$-algebra
@article{10_21136_MB_2022_0066_21,
     author = {Fakri Moghaddam, Sadaf and Kamel Mirmostafaee, Alireza},
     title = {Numerical radius inequalities for {Hilbert} $C^{*}$-modules},
     journal = {Mathematica Bohemica},
     pages = {547--566},
     year = {2022},
     volume = {147},
     number = {4},
     doi = {10.21136/MB.2022.0066-21},
     mrnumber = {4512173},
     zbl = {07655826},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0066-21/}
}
TY  - JOUR
AU  - Fakri Moghaddam, Sadaf
AU  - Kamel Mirmostafaee, Alireza
TI  - Numerical radius inequalities for Hilbert $C^{*}$-modules
JO  - Mathematica Bohemica
PY  - 2022
SP  - 547
EP  - 566
VL  - 147
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0066-21/
DO  - 10.21136/MB.2022.0066-21
LA  - en
ID  - 10_21136_MB_2022_0066_21
ER  - 
%0 Journal Article
%A Fakri Moghaddam, Sadaf
%A Kamel Mirmostafaee, Alireza
%T Numerical radius inequalities for Hilbert $C^{*}$-modules
%J Mathematica Bohemica
%D 2022
%P 547-566
%V 147
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0066-21/
%R 10.21136/MB.2022.0066-21
%G en
%F 10_21136_MB_2022_0066_21
Fakri Moghaddam, Sadaf; Kamel Mirmostafaee, Alireza. Numerical radius inequalities for Hilbert $C^{*}$-modules. Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 547-566. doi: 10.21136/MB.2022.0066-21

[1] Bhunia, P., Bag, S., Paul, K.: Numerical radius inequalities and its applications in estimation of zeros of polynomials. Linear Algebra Appl. 573 (2019), 166-177. | DOI | MR | JFM

[2] Dragomir, S. S.: Some refinements of Schwarz inequality. Proceedings of the Simpozionul de Matematici si Aplicatii, Timisoara, Romania (1985), 13-16.

[3] Dragomir, S. S.: A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces. Banach J. Math. Anal. 1 (2007), 154-175. | DOI | MR | JFM

[4] Dragomir, S. S.: Inequalities for the norm and numerical radius of composite operator in Hilbert spaces. Inequalities and Applications International Series of Numerical Mathematics 157. Birkhäuser, Basel (2009), 135-146. | DOI | MR | JFM

[5] Dragomir, S. S.: Power inequalities for the numerical radius of a product of two operators in Hilbert spaces. Sarajevo J. Math. 5 (2009), 269-278. | MR | JFM

[6] Goldberg, M., Tadmor, E.: On the numerical radius and its applications. Linear Algebra Appl. 42 (1982), 263-284. | DOI | MR | JFM

[7] Goldstein, A. A., Ryff, J. V., Clarke, L. E.: Problems and solutions: Solutions of advanced problems 5473. Am. Math. Mon. 75 (1968), 309-310. | DOI | MR

[8] Gustafson, K. E., Rao, D. K. M.: Numerical Range: The Field of Values of Linear Operators and Matrices. Universitext. Springer, New York (1997). | DOI | MR | JFM

[9] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). | MR | JFM

[10] Hosseini, M. S., Omidvar, M. E., Moosavi, B., Moradi, H. R.: Some inequalities for the numerical radius for Hilbert $C^*$-modules space operators. Georgian Math. J. 28 (2021), 255-260. | DOI | MR | JFM

[11] Kadison, R. V., Ringrose, J. R.: Fundamentals of the Theory of Operator Algebras. Vol. 1. Elementary Theory. Pure and Applied Mathematics 100. Academic Press, New York (1983). | MR | JFM

[12] Kaplansky, I.: Modules over operator algebras. Am. J. Math. 75 (1953), 839-858. | DOI | MR | JFM

[13] Kittaneh, F.: Notes on some inequalities for Hilbert space operators. Publ. Res. Inst. Math. Sci. 24 (1988), 283-293. | DOI | MR | JFM

[14] Kittaneh, F.: Numerical radius inequalities for Hilbert space operators. Stud. Math. 168 (2005), 73-80. | DOI | MR | JFM

[15] Lance, E. C.: Hilbert $C^*$-Module: A Toolkit for Operator Algebraists. London Mathematical Society Lecture Note Series 210. Cambridge University Press, Cambridge (1995). | DOI | MR | JFM

[16] McCarthy, C. A.: $C_p$. Isr. J. Math. 5 (1967), 249-271. | DOI | MR | JFM

[17] Mehrazin, M., Amyari, M., Omidvar, M. E.: A new type of numerical radius of operators on Hilbert $C^*$-module. Rend. Circ. Mat. Palermo (2) 69 (2020), 29-37. | DOI | MR | JFM

[18] Mirmostafaee, A. K., Rahpeyma, O. P., Omidvar, M. E.: Numerical radius ineqalities for finite sums of operators. Demonstr. Math. 47 (2014), 963-970. | DOI | MR | JFM

[19] Moosavi, B., Hosseini, M. S.: Some inequalities for the numerical radius for operators in Hilbert $C^*$-modules space. J. Inequal. Spec. Funct. 10 (2019), 77-84. | MR

[20] Murphy, G. J.: $C^*$-Algebras and Operator Theory. Academic Press, Boston (1990). | MR | JFM

[21] Paschke, W. L.: Inner product modules over $B^*$-algebras. Trans. Am. Math. Soc. 182 (1973), 443-468. | DOI | MR | JFM

[22] Rieffel, M. A.: Induced representations of $C^*$-algebras. Adv. Math. 13 (1974), 176-257. | DOI | MR | JFM

[23] Sattari, M., Moslehian, M. S., Yamazaki, T.: Some generalized numerical radius ineqalities for Hilbert space operators. Linear Algebra Appl. 470 (2015), 216-227. | DOI | MR | JFM

[24] Yamazaki, T.: On upper and lower bounds of the numerical radius and an equality condition. Stud. Math. 178 (2007), 83-89. | DOI | MR | JFM

Cité par Sources :