On the inclusions of $X^\Phi $ spaces
Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 65-72.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We give some equivalent conditions (independent from the Young functions) for inclusions between some classes of $X^\Phi $ spaces, where $\Phi $ is a Young function and $X$ is a quasi-Banach function space on a $\sigma $-finite measure space $(\Omega ,\mathcal {A},\mu )$.
DOI : 10.21136/MB.2022.0064-21
Classification : 46E30
Keywords: Young function; Orlicz space; quasi-Banach function space; inclusion
@article{10_21136_MB_2022_0064_21,
     author = {Tabatabaie, Seyyed Mohammad and Bagheri Salec, Alireza},
     title = {On the inclusions of $X^\Phi $ spaces},
     journal = {Mathematica Bohemica},
     pages = {65--72},
     publisher = {mathdoc},
     volume = {148},
     number = {1},
     year = {2023},
     doi = {10.21136/MB.2022.0064-21},
     mrnumber = {4536310},
     zbl = {07655813},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0064-21/}
}
TY  - JOUR
AU  - Tabatabaie, Seyyed Mohammad
AU  - Bagheri Salec, Alireza
TI  - On the inclusions of $X^\Phi $ spaces
JO  - Mathematica Bohemica
PY  - 2023
SP  - 65
EP  - 72
VL  - 148
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0064-21/
DO  - 10.21136/MB.2022.0064-21
LA  - en
ID  - 10_21136_MB_2022_0064_21
ER  - 
%0 Journal Article
%A Tabatabaie, Seyyed Mohammad
%A Bagheri Salec, Alireza
%T On the inclusions of $X^\Phi $ spaces
%J Mathematica Bohemica
%D 2023
%P 65-72
%V 148
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0064-21/
%R 10.21136/MB.2022.0064-21
%G en
%F 10_21136_MB_2022_0064_21
Tabatabaie, Seyyed Mohammad; Bagheri Salec, Alireza. On the inclusions of $X^\Phi $ spaces. Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 65-72. doi : 10.21136/MB.2022.0064-21. http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0064-21/

Cité par Sources :