Keywords: Young function; Orlicz space; quasi-Banach function space; inclusion
@article{10_21136_MB_2022_0064_21,
author = {Tabatabaie, Seyyed Mohammad and Bagheri Salec, Alireza},
title = {On the inclusions of $X^\Phi $ spaces},
journal = {Mathematica Bohemica},
pages = {65--72},
year = {2023},
volume = {148},
number = {1},
doi = {10.21136/MB.2022.0064-21},
mrnumber = {4536310},
zbl = {07655813},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0064-21/}
}
TY - JOUR AU - Tabatabaie, Seyyed Mohammad AU - Bagheri Salec, Alireza TI - On the inclusions of $X^\Phi $ spaces JO - Mathematica Bohemica PY - 2023 SP - 65 EP - 72 VL - 148 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0064-21/ DO - 10.21136/MB.2022.0064-21 LA - en ID - 10_21136_MB_2022_0064_21 ER -
Tabatabaie, Seyyed Mohammad; Bagheri Salec, Alireza. On the inclusions of $X^\Phi $ spaces. Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 65-72. doi: 10.21136/MB.2022.0064-21
[1] Campo, R. del, Fernández, A., Mayoral, F., Naranjo, F.: Orlicz spaces associated to a quasi-Banach function space: Applications to vector measures and interpolation. Collect. Math. 72 (2021), 481-499. | DOI | MR | JFM
[2] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces. Pure and Applied Mathematics 146. Marcel Dekker, New York (1991). | MR | JFM
[3] Romero, J. L.: When is $L^p(\mu)$ contained in $L^q(\mu)$?. Am. Math. Mon. 90 (1983), 203-206. | DOI | MR | JFM
[4] Sawano, Y., Tabatabaie, S. M.: Inclusions in generalized Orlicz spaces. Bull. Iran. Math. Soc. 47 (2021), 1227-1233. | DOI | MR | JFM
[5] Subramanian, B.: On the inclusion $L^p(\mu)\subset L^q(\mu)$. Am. Math. Mon. 85 (1978), 479-481. | DOI | MR | JFM
[6] Villani, A.: Another note on the inclusion $L^p(\mu) \subset L^q(\mu)$. Am. Math. Mon. 92 (1985), 485-487. | DOI | MR | JFM
Cité par Sources :