Keywords: renormalized solution; nonlinear elliptic equation; non-coercive problem
@article{10_21136_MB_2022_0061_21,
author = {Akdim, Youssef and Belayachi, Mohammed and Hjiaj, Hassane},
title = {Existence of renormalized solutions for some degenerate and non-coercive elliptic equations},
journal = {Mathematica Bohemica},
pages = {255--282},
year = {2023},
volume = {148},
number = {2},
doi = {10.21136/MB.2022.0061-21},
mrnumber = {4585581},
zbl = {07729577},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0061-21/}
}
TY - JOUR AU - Akdim, Youssef AU - Belayachi, Mohammed AU - Hjiaj, Hassane TI - Existence of renormalized solutions for some degenerate and non-coercive elliptic equations JO - Mathematica Bohemica PY - 2023 SP - 255 EP - 282 VL - 148 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0061-21/ DO - 10.21136/MB.2022.0061-21 LA - en ID - 10_21136_MB_2022_0061_21 ER -
%0 Journal Article %A Akdim, Youssef %A Belayachi, Mohammed %A Hjiaj, Hassane %T Existence of renormalized solutions for some degenerate and non-coercive elliptic equations %J Mathematica Bohemica %D 2023 %P 255-282 %V 148 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0061-21/ %R 10.21136/MB.2022.0061-21 %G en %F 10_21136_MB_2022_0061_21
Akdim, Youssef; Belayachi, Mohammed; Hjiaj, Hassane. Existence of renormalized solutions for some degenerate and non-coercive elliptic equations. Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 255-282. doi: 10.21136/MB.2022.0061-21
[1] Alvino, A., Boccardo, L., Ferone, V., Orsina, L., Trombetti, G.: Existence results for nonlinear elliptic equations with degenerate coercivity. Ann. Mat. Pura Appl., IV. Ser. 182 (2003), 53-79. | DOI | MR | JFM
[2] Alvino, A., Ferone, V., Trombetti, G.: A priori estimates for a class of nonuniformly elliptic equations. Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 381-391. | MR | JFM
[3] Ali, M. Ben Cheikh, Guibé, O.: Nonlinear and non-coercive elliptic problems with integrable data. Adv. Math. Sci. Appl. 16 (2006), 275-297. | MR | JFM
[4] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J. L.: An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. | MR | JFM
[5] Bensoussan, A., Boccardo, L., Murat, F.: On a nonlinear partial differential equation having natural growth terms and unbounded solution. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 5 (1988), 347-364. | DOI | MR | JFM
[6] Blanchard, D., Guibé, O.: Infinite valued solutions of non-uniformly elliptic problems. Anal. Appl., Singap. 2 (2004), 227-246. | DOI | MR | JFM
[7] Boccardo, L., Dall'Aglio, A., Orsina, L.: Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 51-81. | MR | JFM
[8] Boccardo, L., Gallouet, T.: Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data. Nonlinear Anal., Theory Methods Appl. 19 (1992), 573-579. | DOI | MR | JFM
[9] Croce, G.: The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity. Rend. Mat. Appl., VII. Ser. 27 (2007), 299-314. | MR | JFM
[10] Vecchio, T. Del, Posteraro, M. R.: Existence and regularity results for nonlinear elliptic equations with measure data. Adv. Differ. Equ. 1 (1996), 899-917. | MR | JFM
[11] Pietra, F. Della: Existence results for non-uniformly elliptic equations with general growth in the gradient. Differ. Integral Equ. 21 (2008), 821-836. | MR | JFM
[12] Droniou, J.: Non-coercive linear elliptic problems. Potential Anal. 17 (2002), 181-203. | DOI | MR | JFM
[13] Droniou, J.: Global and local estimates for nonlinear noncoercive elliptic equations with measure data. Commun. Partial Differ. Equations 28 (2003), 129-153. | DOI | MR | JFM
[14] Guibé, O., Mercaldo, A.: Existence and stability results for renormalized solutions to noncoercive nonlinear elliptic equations with measure data. Potential Anal. 25 (2006), 223-258. | DOI | MR | JFM
[15] Guibé, O., Mercaldo, A.: Existence of renormalized solutions to nonlinear elliptic equations with two lower order terms and measure data. Trans. Am. Math. Soc. 360 (2008), 643-669. | DOI | MR | JFM
[16] Leone, C., Porretta, A.: Entropy solutions for nonlinear elliptic equations in $L^1$. Nonlinear Anal., Theory Methods Appl. 32 (1998), 325-334. | DOI | MR | JFM
[17] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Gauthier-Villars, Paris (1969), French. | MR | JFM
[18] Maderna, C., Pagani, C. D., Salsa, S.: Quasilinear elliptic equations with quadratic growth in the gradient. J. Differ. Equations 97 (1992), 54-70. | DOI | MR | JFM
[19] Murat, F.: Soluciones renormalizadas de EDP elipticas non lineales. Technical Report R93023, Laboratoire d'Analyse Numérique, Paris (1993), French.
[20] Porretta, A.: Nonlinear equations with natural growth terms and measure data. Electron. J. Differ. Equ. Conf. 09 (2002), 183-202. | MR | JFM
[21] León, S. Segura de: Existence and uniqueness for $L^1$ data of some elliptic equations with natural growth. Adv. Differ. Equ. 8 (2003), 1377-1408. | MR | JFM
[22] Trombetti, C.: Non-uniformly elliptic equations with natural growth in the gradient. Potential Anal. 18 (2003), 391-404. | DOI | MR | JFM
[23] Zou, W.: Existence of solutions for a class of porous medium type equations with a lower order terms. J. Inequal. Appl. 2015 (2015), Article ID 294, 23 pages. | DOI | MR | JFM
Cité par Sources :