Existence of renormalized solutions for some degenerate and non-coercive elliptic equations
Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 255-282
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is devoted to the study of some nonlinear degenerated elliptic equations, whose prototype is given by $$ \begin{aligned}t 2-{\rm div}( b(|u|)|\nabla u|^{p-2}\nabla u) + d(|u|)|\nabla u|^{p} = f - {\rm div}(c(x)|u|^{\alpha }) \quad \mbox {in}\ \Omega ,\\ u = 0 \quad \mbox {on}\ \partial \Omega , \end{aligned}t $$ where $\Omega $ is a bounded open set of $\mathbb {R}^N$ ($N\geq 2$) with $1
This paper is devoted to the study of some nonlinear degenerated elliptic equations, whose prototype is given by $$ \begin{aligned}t 2-{\rm div}( b(|u|)|\nabla u|^{p-2}\nabla u) + d(|u|)|\nabla u|^{p} = f - {\rm div}(c(x)|u|^{\alpha }) \quad \mbox {in}\ \Omega ,\\ u = 0 \quad \mbox {on}\ \partial \Omega , \end{aligned}t $$ where $\Omega $ is a bounded open set of $\mathbb {R}^N$ ($N\geq 2$) with $1$ and $f \in L^{1}(\Omega ),$ under some growth conditions on the function $b(\cdot )$ and $d(\cdot ),$ where $c(\cdot )$ is assumed to be in $L^{\frac {N}{(p-1)}}(\Omega ).$ We show the existence of renormalized solutions for this non-coercive elliptic equation, also, some regularity results will be concluded.
DOI : 10.21136/MB.2022.0061-21
Classification : 35J60, 46E30, 46E35
Keywords: renormalized solution; nonlinear elliptic equation; non-coercive problem
@article{10_21136_MB_2022_0061_21,
     author = {Akdim, Youssef and Belayachi, Mohammed and Hjiaj, Hassane},
     title = {Existence of renormalized solutions for some degenerate and non-coercive elliptic equations},
     journal = {Mathematica Bohemica},
     pages = {255--282},
     year = {2023},
     volume = {148},
     number = {2},
     doi = {10.21136/MB.2022.0061-21},
     mrnumber = {4585581},
     zbl = {07729577},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0061-21/}
}
TY  - JOUR
AU  - Akdim, Youssef
AU  - Belayachi, Mohammed
AU  - Hjiaj, Hassane
TI  - Existence of renormalized solutions for some degenerate and non-coercive elliptic equations
JO  - Mathematica Bohemica
PY  - 2023
SP  - 255
EP  - 282
VL  - 148
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0061-21/
DO  - 10.21136/MB.2022.0061-21
LA  - en
ID  - 10_21136_MB_2022_0061_21
ER  - 
%0 Journal Article
%A Akdim, Youssef
%A Belayachi, Mohammed
%A Hjiaj, Hassane
%T Existence of renormalized solutions for some degenerate and non-coercive elliptic equations
%J Mathematica Bohemica
%D 2023
%P 255-282
%V 148
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0061-21/
%R 10.21136/MB.2022.0061-21
%G en
%F 10_21136_MB_2022_0061_21
Akdim, Youssef; Belayachi, Mohammed; Hjiaj, Hassane. Existence of renormalized solutions for some degenerate and non-coercive elliptic equations. Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 255-282. doi: 10.21136/MB.2022.0061-21

[1] Alvino, A., Boccardo, L., Ferone, V., Orsina, L., Trombetti, G.: Existence results for nonlinear elliptic equations with degenerate coercivity. Ann. Mat. Pura Appl., IV. Ser. 182 (2003), 53-79. | DOI | MR | JFM

[2] Alvino, A., Ferone, V., Trombetti, G.: A priori estimates for a class of nonuniformly elliptic equations. Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 381-391. | MR | JFM

[3] Ali, M. Ben Cheikh, Guibé, O.: Nonlinear and non-coercive elliptic problems with integrable data. Adv. Math. Sci. Appl. 16 (2006), 275-297. | MR | JFM

[4] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J. L.: An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. | MR | JFM

[5] Bensoussan, A., Boccardo, L., Murat, F.: On a nonlinear partial differential equation having natural growth terms and unbounded solution. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 5 (1988), 347-364. | DOI | MR | JFM

[6] Blanchard, D., Guibé, O.: Infinite valued solutions of non-uniformly elliptic problems. Anal. Appl., Singap. 2 (2004), 227-246. | DOI | MR | JFM

[7] Boccardo, L., Dall'Aglio, A., Orsina, L.: Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 51-81. | MR | JFM

[8] Boccardo, L., Gallouet, T.: Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data. Nonlinear Anal., Theory Methods Appl. 19 (1992), 573-579. | DOI | MR | JFM

[9] Croce, G.: The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity. Rend. Mat. Appl., VII. Ser. 27 (2007), 299-314. | MR | JFM

[10] Vecchio, T. Del, Posteraro, M. R.: Existence and regularity results for nonlinear elliptic equations with measure data. Adv. Differ. Equ. 1 (1996), 899-917. | MR | JFM

[11] Pietra, F. Della: Existence results for non-uniformly elliptic equations with general growth in the gradient. Differ. Integral Equ. 21 (2008), 821-836. | MR | JFM

[12] Droniou, J.: Non-coercive linear elliptic problems. Potential Anal. 17 (2002), 181-203. | DOI | MR | JFM

[13] Droniou, J.: Global and local estimates for nonlinear noncoercive elliptic equations with measure data. Commun. Partial Differ. Equations 28 (2003), 129-153. | DOI | MR | JFM

[14] Guibé, O., Mercaldo, A.: Existence and stability results for renormalized solutions to noncoercive nonlinear elliptic equations with measure data. Potential Anal. 25 (2006), 223-258. | DOI | MR | JFM

[15] Guibé, O., Mercaldo, A.: Existence of renormalized solutions to nonlinear elliptic equations with two lower order terms and measure data. Trans. Am. Math. Soc. 360 (2008), 643-669. | DOI | MR | JFM

[16] Leone, C., Porretta, A.: Entropy solutions for nonlinear elliptic equations in $L^1$. Nonlinear Anal., Theory Methods Appl. 32 (1998), 325-334. | DOI | MR | JFM

[17] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Gauthier-Villars, Paris (1969), French. | MR | JFM

[18] Maderna, C., Pagani, C. D., Salsa, S.: Quasilinear elliptic equations with quadratic growth in the gradient. J. Differ. Equations 97 (1992), 54-70. | DOI | MR | JFM

[19] Murat, F.: Soluciones renormalizadas de EDP elipticas non lineales. Technical Report R93023, Laboratoire d'Analyse Numérique, Paris (1993), French.

[20] Porretta, A.: Nonlinear equations with natural growth terms and measure data. Electron. J. Differ. Equ. Conf. 09 (2002), 183-202. | MR | JFM

[21] León, S. Segura de: Existence and uniqueness for $L^1$ data of some elliptic equations with natural growth. Adv. Differ. Equ. 8 (2003), 1377-1408. | MR | JFM

[22] Trombetti, C.: Non-uniformly elliptic equations with natural growth in the gradient. Potential Anal. 18 (2003), 391-404. | DOI | MR | JFM

[23] Zou, W.: Existence of solutions for a class of porous medium type equations with a lower order terms. J. Inequal. Appl. 2015 (2015), Article ID 294, 23 pages. | DOI | MR | JFM

Cité par Sources :