Note on the Hilbert 2-class field tower
Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 513-524
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $k$ be a number field with a 2-class group isomorphic to the Klein four-group. The aim of this paper is to give a characterization of capitulation types using group properties. Furthermore, as applications, we determine the structure of the second 2-class groups of some special Dirichlet fields $\Bbbk =\Bbb {Q}\big (\sqrt d, \sqrt {-1}\big )$, which leads to a correction of some parts in the main results of A. Azizi and A. Zekhini (2020).
Let $k$ be a number field with a 2-class group isomorphic to the Klein four-group. The aim of this paper is to give a characterization of capitulation types using group properties. Furthermore, as applications, we determine the structure of the second 2-class groups of some special Dirichlet fields $\Bbbk =\Bbb {Q}\big (\sqrt d, \sqrt {-1}\big )$, which leads to a correction of some parts in the main results of A. Azizi and A. Zekhini (2020).
DOI : 10.21136/MB.2022.0056-21
Classification : 11R11, 11R16, 11R20, 11R27, 11R29, 11R37
Keywords: multiquadratic field; fundamental systems of units; 2-class group; 2-class field tower; capitulation
@article{10_21136_MB_2022_0056_21,
     author = {Azizi, Abdelmalek and Chems-Eddin, Mohamed Mahmoud and Zekhnini, Abdelkader},
     title = {Note on the {Hilbert} 2-class field tower},
     journal = {Mathematica Bohemica},
     pages = {513--524},
     year = {2022},
     volume = {147},
     number = {4},
     doi = {10.21136/MB.2022.0056-21},
     mrnumber = {4512171},
     zbl = {07655824},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0056-21/}
}
TY  - JOUR
AU  - Azizi, Abdelmalek
AU  - Chems-Eddin, Mohamed Mahmoud
AU  - Zekhnini, Abdelkader
TI  - Note on the Hilbert 2-class field tower
JO  - Mathematica Bohemica
PY  - 2022
SP  - 513
EP  - 524
VL  - 147
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0056-21/
DO  - 10.21136/MB.2022.0056-21
LA  - en
ID  - 10_21136_MB_2022_0056_21
ER  - 
%0 Journal Article
%A Azizi, Abdelmalek
%A Chems-Eddin, Mohamed Mahmoud
%A Zekhnini, Abdelkader
%T Note on the Hilbert 2-class field tower
%J Mathematica Bohemica
%D 2022
%P 513-524
%V 147
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0056-21/
%R 10.21136/MB.2022.0056-21
%G en
%F 10_21136_MB_2022_0056_21
Azizi, Abdelmalek; Chems-Eddin, Mohamed Mahmoud; Zekhnini, Abdelkader. Note on the Hilbert 2-class field tower. Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 513-524. doi: 10.21136/MB.2022.0056-21

[1] Azizi, A.: Sur le 2-groupe de classes d'idéaux de $\mathbb Q(\sqrt d, i)$. Rend. Circ. Mat. Palermo, II. Ser. French 48 (1999), 71-92. | DOI | MR | JFM

[2] Azizi, A.: Unités de certains corps de nombres imaginaires et abéliens sur $\mathbb Q$. Ann. Sci. Math. Qué. 23 (1999), 15-21 French. | MR | JFM

[3] Azizi, A., Benhamza, I.: Sur la capitulation des 2-classes d'idéaux de $\mathbb Q(\sqrt d, \sqrt{-2})$. Ann. Sci. Math. Qué. French 29 (2005), 1-20. | MR | JFM

[4] Azizi, A., Zekhnini, A.: The structure of the second 2-class group of some special Dirichlet fields. Asian-Eur. J. Math. 13 (2020), Article ID 2050053, 6 pages. | DOI | MR | JFM

[5] Azizi, A., Zekhnini, A., Taous, M.: The generators of the 2-class group of some field $\mathbb Q(\sqrt{pq_1q_2,i})$: Correction to Theorem 3 of [5]. Int. J. Pure Appl. Math. 103 (2015), 99-107. | DOI | MR

[6] Chems-Eddin, M. M., Azizi, A., Zekhnini, A.: Unit groups and Iwasawa lambda invariants of some multiquadratic number fields. Bol. Soc. Mat. Mex., III. Ser. 27 (2021), Article ID 24, 16 pages. | DOI | MR | JFM

[7] Chems-Eddin, M. M., Zekhnini, A., Azizi, A.: Units and 2-class field towers of some multiquadratic number fields. Turk. J. Math. 44 (2020), 1466-1483. | DOI | MR | JFM

[8] Conner, P. E., Hurrelbrink, J.: Class Number Parity. Series in Pure Mathematics 8. World Scientific, Singapore (1988). | DOI | MR | JFM

[9] Gorenstein, D.: Finite Groups. Harper's Series in Modern Mathematics. Harper and Row, New York (1968). | MR | JFM

[10] Heider, F.-P., Schmithals, B.: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. J. Reine Angew. Math. 366 (1982), 1-25 German. | DOI | MR | JFM

[11] Hilbert, D.: Über den Dirichlet'schen biquadratischen Zahlkörper. Math. Ann. 45 (1894), 309-340 German \99999JFM99999 25.0303.01. | DOI | MR

[12] Kaplan, P.: Sur le 2-groupe des classes d'idéaux des corps quadratiques. J. Reine Angew. Math. 283/284 (1976), 313-363 French. | DOI | MR | JFM

[13] Kisilevsky, H.: Number fields with class number congruent to 4 mod 8 and Hilbert's Theorem 94. J. Number Theory 8 (1976), 271-279. | DOI | MR | JFM

[14] Wada, H.: On the class number and the unit group of certain algebraic number fields. J. Fac. Sci., Univ. Tokyo, Sect. I 13 (1966), 201-209. | MR | JFM

Cité par Sources :