On locales whose countably compact sublocales have compact closure
Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 481-500
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Among completely regular locales, we characterize those that have the feature described in the title. They are, of course, localic analogues of what are called ${\rm cl}$-isocompact spaces. They have been considered in T. Dube, I. Naidoo, C. N. Ncube (2014), so here we give new characterizations that do not appear in this reference.
Classification :
06D22, 54B10, 54D20, 54D30
Keywords: frame; locale; isocompact; ${\rm cl}$-isocompact; fully ${\rm cl}$-isocompact
Keywords: frame; locale; isocompact; ${\rm cl}$-isocompact; fully ${\rm cl}$-isocompact
@article{10_21136_MB_2022_0051_22,
author = {Dube, Themba},
title = {On locales whose countably compact sublocales have compact closure},
journal = {Mathematica Bohemica},
pages = {481--500},
publisher = {mathdoc},
volume = {148},
number = {4},
year = {2023},
doi = {10.21136/MB.2022.0051-22},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0051-22/}
}
TY - JOUR AU - Dube, Themba TI - On locales whose countably compact sublocales have compact closure JO - Mathematica Bohemica PY - 2023 SP - 481 EP - 500 VL - 148 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0051-22/ DO - 10.21136/MB.2022.0051-22 LA - en ID - 10_21136_MB_2022_0051_22 ER -
Dube, Themba. On locales whose countably compact sublocales have compact closure. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 481-500. doi: 10.21136/MB.2022.0051-22
Cité par Sources :