On locales whose countably compact sublocales have compact closure
Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 481-500
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Among completely regular locales, we characterize those that have the feature described in the title. They are, of course, localic analogues of what are called ${\rm cl}$-isocompact spaces. They have been considered in T. Dube, I. Naidoo, C. N. Ncube (2014), so here we give new characterizations that do not appear in this reference.
Among completely regular locales, we characterize those that have the feature described in the title. They are, of course, localic analogues of what are called ${\rm cl}$-isocompact spaces. They have been considered in T. Dube, I. Naidoo, C. N. Ncube (2014), so here we give new characterizations that do not appear in this reference.
DOI : 10.21136/MB.2022.0051-22
Classification : 06D22, 54B10, 54D20, 54D30
Keywords: frame; locale; isocompact; ${\rm cl}$-isocompact; fully ${\rm cl}$-isocompact
@article{10_21136_MB_2022_0051_22,
     author = {Dube, Themba},
     title = {On locales whose countably compact sublocales have compact closure},
     journal = {Mathematica Bohemica},
     pages = {481--500},
     year = {2023},
     volume = {148},
     number = {4},
     doi = {10.21136/MB.2022.0051-22},
     mrnumber = {4673832},
     zbl = {07790598},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0051-22/}
}
TY  - JOUR
AU  - Dube, Themba
TI  - On locales whose countably compact sublocales have compact closure
JO  - Mathematica Bohemica
PY  - 2023
SP  - 481
EP  - 500
VL  - 148
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0051-22/
DO  - 10.21136/MB.2022.0051-22
LA  - en
ID  - 10_21136_MB_2022_0051_22
ER  - 
%0 Journal Article
%A Dube, Themba
%T On locales whose countably compact sublocales have compact closure
%J Mathematica Bohemica
%D 2023
%P 481-500
%V 148
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0051-22/
%R 10.21136/MB.2022.0051-22
%G en
%F 10_21136_MB_2022_0051_22
Dube, Themba. On locales whose countably compact sublocales have compact closure. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 481-500. doi: 10.21136/MB.2022.0051-22

[1] Bacon, P.: The compactness of countably compact spaces. Pac. J. Math. 32 (1970), 587-592 \99999DOI99999 10.2140/pjm.1970.32.587 . | DOI | MR | JFM

[2] Banaschewski, B., Gilmour, C.: Pseudocompactness and the cozero part of a frame. Commentat. Math. Univ. Carol. 37 (1996), 577-587. | MR | JFM

[3] Banaschewski, B., Gilmour, C.: Realcompactness and the cozero part of a frame. Appl. Categ. Struct. 9 (2001), 395-417 \99999DOI99999 10.1023/A:1011225712426 . | MR | JFM

[4] Dube, T.: Characterizing realcompact locales via remainders. Georgian Math. J. 28 (2021), 59-72. | DOI | MR | JFM

[5] Dube, T., Iliadis, S., Mill, J. van, Naidoo, I.: A pseudocompact completely regular frame which is not spatial. Order 31 (2014), 115-120 \99999DOI99999 10.1007/s11083-013-9291-7 . | MR | JFM

[6] Dube, T., Naidoo, I., Ncube, C. N.: Isocompactness in the category of locales. Appl. Categ. Struct. 22 (2014), 727-739 \99999DOI99999 10.1007/s10485-013-9341-8 . | MR | JFM

[7] García-Ferreira, S., Sanchis, M.: Projection maps and isocompactness. Quest. Answers Gen. Topology 19 (2001), 165-176. | MR | JFM

[8] García, J. Gutiérrez, Picado, J.: On the parallel between normality and extremal disconnectedness. J. Pure Appl. Algebra 218 (2014), 784-803. | DOI | MR | JFM

[9] Hasegawa, M.: On products of isocompact spaces. Mem. Osaka Kyoiku Univ. III Natur. Sci. Appl. Sci. 21 (1972), 213-216. | MR

[10] Isbell, J.: Graduation and dimension in locales. Aspects of Topology London Mathematical Society Lecture Note Series 93. Cambridge University Press, Cambridge (1985), 195-210. | MR | JFM

[11] Isbell, J., Kříž, I., Pultr, A., Rosický, J.: Remarks on localic groups. Categorical Algebra and its Applications Lecture Notes in Mathematics 1348. Springer, Berlin (1988), 154-172. | DOI | MR | JFM

[12] Johnstone, P. T.: Stone Spaces. Cambridge Studies in Advanced Mathematics 3. Cambridge University Press, Cambridge (1982). | MR | JFM

[13] Picado, J., Pultr, A.: Frames and Locales: Topology without Points. Frontiers in Mathematics. Springer, Berlin (2012). | DOI | MR | JFM

[14] Picado, J., Pultr, A., Tozzi, A.: Locales. Categorical Foundations: Special Topics in Order, Topology, Algebra and Sheaf Theory Encyclopedia of Mathematics and Its Applications 97. Cambridge University Press, Cambridge (2004), 49-101. | MR | JFM

[15] Plewe, T.: Sublocale lattices. J. Pure Appl. Algebra 168 (2002), 309-326. | DOI | MR | JFM

[16] Sakai, M.: On $CL$-isocompactness and weak Borel completeness. Tsukuba J. Math. 8 (1984), 377-382. | DOI | MR | JFM

[17] Walters-Wayland, J. L.: Completeness and Nearly Fine Uniform Frames: Doctoral Thesis. Catholic University of Louvain, Louvain (1995).

Cité par Sources :