Keywords: frame; locale; isocompact; ${\rm cl}$-isocompact; fully ${\rm cl}$-isocompact
@article{10_21136_MB_2022_0051_22,
author = {Dube, Themba},
title = {On locales whose countably compact sublocales have compact closure},
journal = {Mathematica Bohemica},
pages = {481--500},
year = {2023},
volume = {148},
number = {4},
doi = {10.21136/MB.2022.0051-22},
mrnumber = {4673832},
zbl = {07790598},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0051-22/}
}
TY - JOUR AU - Dube, Themba TI - On locales whose countably compact sublocales have compact closure JO - Mathematica Bohemica PY - 2023 SP - 481 EP - 500 VL - 148 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0051-22/ DO - 10.21136/MB.2022.0051-22 LA - en ID - 10_21136_MB_2022_0051_22 ER -
Dube, Themba. On locales whose countably compact sublocales have compact closure. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 481-500. doi: 10.21136/MB.2022.0051-22
[1] Bacon, P.: The compactness of countably compact spaces. Pac. J. Math. 32 (1970), 587-592 \99999DOI99999 10.2140/pjm.1970.32.587 . | DOI | MR | JFM
[2] Banaschewski, B., Gilmour, C.: Pseudocompactness and the cozero part of a frame. Commentat. Math. Univ. Carol. 37 (1996), 577-587. | MR | JFM
[3] Banaschewski, B., Gilmour, C.: Realcompactness and the cozero part of a frame. Appl. Categ. Struct. 9 (2001), 395-417 \99999DOI99999 10.1023/A:1011225712426 . | MR | JFM
[4] Dube, T.: Characterizing realcompact locales via remainders. Georgian Math. J. 28 (2021), 59-72. | DOI | MR | JFM
[5] Dube, T., Iliadis, S., Mill, J. van, Naidoo, I.: A pseudocompact completely regular frame which is not spatial. Order 31 (2014), 115-120 \99999DOI99999 10.1007/s11083-013-9291-7 . | MR | JFM
[6] Dube, T., Naidoo, I., Ncube, C. N.: Isocompactness in the category of locales. Appl. Categ. Struct. 22 (2014), 727-739 \99999DOI99999 10.1007/s10485-013-9341-8 . | MR | JFM
[7] García-Ferreira, S., Sanchis, M.: Projection maps and isocompactness. Quest. Answers Gen. Topology 19 (2001), 165-176. | MR | JFM
[8] García, J. Gutiérrez, Picado, J.: On the parallel between normality and extremal disconnectedness. J. Pure Appl. Algebra 218 (2014), 784-803. | DOI | MR | JFM
[9] Hasegawa, M.: On products of isocompact spaces. Mem. Osaka Kyoiku Univ. III Natur. Sci. Appl. Sci. 21 (1972), 213-216. | MR
[10] Isbell, J.: Graduation and dimension in locales. Aspects of Topology London Mathematical Society Lecture Note Series 93. Cambridge University Press, Cambridge (1985), 195-210. | MR | JFM
[11] Isbell, J., Kříž, I., Pultr, A., Rosický, J.: Remarks on localic groups. Categorical Algebra and its Applications Lecture Notes in Mathematics 1348. Springer, Berlin (1988), 154-172. | DOI | MR | JFM
[12] Johnstone, P. T.: Stone Spaces. Cambridge Studies in Advanced Mathematics 3. Cambridge University Press, Cambridge (1982). | MR | JFM
[13] Picado, J., Pultr, A.: Frames and Locales: Topology without Points. Frontiers in Mathematics. Springer, Berlin (2012). | DOI | MR | JFM
[14] Picado, J., Pultr, A., Tozzi, A.: Locales. Categorical Foundations: Special Topics in Order, Topology, Algebra and Sheaf Theory Encyclopedia of Mathematics and Its Applications 97. Cambridge University Press, Cambridge (2004), 49-101. | MR | JFM
[15] Plewe, T.: Sublocale lattices. J. Pure Appl. Algebra 168 (2002), 309-326. | DOI | MR | JFM
[16] Sakai, M.: On $CL$-isocompactness and weak Borel completeness. Tsukuba J. Math. 8 (1984), 377-382. | DOI | MR | JFM
[17] Walters-Wayland, J. L.: Completeness and Nearly Fine Uniform Frames: Doctoral Thesis. Catholic University of Louvain, Louvain (1995).
Cité par Sources :