On locales whose countably compact sublocales have compact closure
Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 481-500.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Among completely regular locales, we characterize those that have the feature described in the title. They are, of course, localic analogues of what are called ${\rm cl}$-isocompact spaces. They have been considered in T. Dube, I. Naidoo, C. N. Ncube (2014), so here we give new characterizations that do not appear in this reference.
DOI : 10.21136/MB.2022.0051-22
Classification : 06D22, 54B10, 54D20, 54D30
Keywords: frame; locale; isocompact; ${\rm cl}$-isocompact; fully ${\rm cl}$-isocompact
@article{10_21136_MB_2022_0051_22,
     author = {Dube, Themba},
     title = {On locales whose countably compact sublocales have compact closure},
     journal = {Mathematica Bohemica},
     pages = {481--500},
     publisher = {mathdoc},
     volume = {148},
     number = {4},
     year = {2023},
     doi = {10.21136/MB.2022.0051-22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0051-22/}
}
TY  - JOUR
AU  - Dube, Themba
TI  - On locales whose countably compact sublocales have compact closure
JO  - Mathematica Bohemica
PY  - 2023
SP  - 481
EP  - 500
VL  - 148
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0051-22/
DO  - 10.21136/MB.2022.0051-22
LA  - en
ID  - 10_21136_MB_2022_0051_22
ER  - 
%0 Journal Article
%A Dube, Themba
%T On locales whose countably compact sublocales have compact closure
%J Mathematica Bohemica
%D 2023
%P 481-500
%V 148
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0051-22/
%R 10.21136/MB.2022.0051-22
%G en
%F 10_21136_MB_2022_0051_22
Dube, Themba. On locales whose countably compact sublocales have compact closure. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 481-500. doi : 10.21136/MB.2022.0051-22. http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0051-22/

Cité par Sources :