Some applications of subordination theorems associated with fractional $q$-calculus operator
Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 131-148
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Using the operator $\frak {D}_{q,\varrho }^{m}(\lambda ,l)$, we introduce the subclasses $\frak {Y}^{*m}_{q,\varrho }(l,\lambda ,\gamma )$ and $\frak {K}^{*m}_{q,\varrho }(l,\lambda ,\gamma )$ of normalized analytic functions. Among the results investigated for each of these function classes, we derive some subordination results involving the Hadamard product of the associated functions. The interesting consequences of some of these subordination results are also discussed. Also, we derive integral means results for these classes.
Using the operator $\frak {D}_{q,\varrho }^{m}(\lambda ,l)$, we introduce the subclasses $\frak {Y}^{*m}_{q,\varrho }(l,\lambda ,\gamma )$ and $\frak {K}^{*m}_{q,\varrho }(l,\lambda ,\gamma )$ of normalized analytic functions. Among the results investigated for each of these function classes, we derive some subordination results involving the Hadamard product of the associated functions. The interesting consequences of some of these subordination results are also discussed. Also, we derive integral means results for these classes.
DOI :
10.21136/MB.2022.0047-21
Classification :
30C45, 30C50
Keywords: analytic function; subordination principle; subordinating factor sequence; Hadamard product; $q$-difference operator; fractional $q$-calculus operator
Keywords: analytic function; subordination principle; subordinating factor sequence; Hadamard product; $q$-difference operator; fractional $q$-calculus operator
@article{10_21136_MB_2022_0047_21,
author = {Kota, Wafaa Y. and El-Ashwah, Rabha Mohamed},
title = {Some applications of subordination theorems associated with fractional $q$-calculus operator},
journal = {Mathematica Bohemica},
pages = {131--148},
year = {2023},
volume = {148},
number = {2},
doi = {10.21136/MB.2022.0047-21},
mrnumber = {4585573},
zbl = {07729569},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0047-21/}
}
TY - JOUR AU - Kota, Wafaa Y. AU - El-Ashwah, Rabha Mohamed TI - Some applications of subordination theorems associated with fractional $q$-calculus operator JO - Mathematica Bohemica PY - 2023 SP - 131 EP - 148 VL - 148 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0047-21/ DO - 10.21136/MB.2022.0047-21 LA - en ID - 10_21136_MB_2022_0047_21 ER -
%0 Journal Article %A Kota, Wafaa Y. %A El-Ashwah, Rabha Mohamed %T Some applications of subordination theorems associated with fractional $q$-calculus operator %J Mathematica Bohemica %D 2023 %P 131-148 %V 148 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0047-21/ %R 10.21136/MB.2022.0047-21 %G en %F 10_21136_MB_2022_0047_21
Kota, Wafaa Y.; El-Ashwah, Rabha Mohamed. Some applications of subordination theorems associated with fractional $q$-calculus operator. Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 131-148. doi: 10.21136/MB.2022.0047-21
Cité par Sources :