Some applications of subordination theorems associated with fractional $q$-calculus operator
Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 131-148
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Using the operator $\frak {D}_{q,\varrho }^{m}(\lambda ,l)$, we introduce the subclasses $\frak {Y}^{*m}_{q,\varrho }(l,\lambda ,\gamma )$ and $\frak {K}^{*m}_{q,\varrho }(l,\lambda ,\gamma )$ of normalized analytic functions. Among the results investigated for each of these function classes, we derive some subordination results involving the Hadamard product of the associated functions. The interesting consequences of some of these subordination results are also discussed. Also, we derive integral means results for these classes.
Using the operator $\frak {D}_{q,\varrho }^{m}(\lambda ,l)$, we introduce the subclasses $\frak {Y}^{*m}_{q,\varrho }(l,\lambda ,\gamma )$ and $\frak {K}^{*m}_{q,\varrho }(l,\lambda ,\gamma )$ of normalized analytic functions. Among the results investigated for each of these function classes, we derive some subordination results involving the Hadamard product of the associated functions. The interesting consequences of some of these subordination results are also discussed. Also, we derive integral means results for these classes.
DOI : 10.21136/MB.2022.0047-21
Classification : 30C45, 30C50
Keywords: analytic function; subordination principle; subordinating factor sequence; Hadamard product; $q$-difference operator; fractional $q$-calculus operator
@article{10_21136_MB_2022_0047_21,
     author = {Kota, Wafaa Y. and El-Ashwah, Rabha Mohamed},
     title = {Some applications of subordination theorems associated with fractional $q$-calculus operator},
     journal = {Mathematica Bohemica},
     pages = {131--148},
     year = {2023},
     volume = {148},
     number = {2},
     doi = {10.21136/MB.2022.0047-21},
     mrnumber = {4585573},
     zbl = {07729569},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0047-21/}
}
TY  - JOUR
AU  - Kota, Wafaa Y.
AU  - El-Ashwah, Rabha Mohamed
TI  - Some applications of subordination theorems associated with fractional $q$-calculus operator
JO  - Mathematica Bohemica
PY  - 2023
SP  - 131
EP  - 148
VL  - 148
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0047-21/
DO  - 10.21136/MB.2022.0047-21
LA  - en
ID  - 10_21136_MB_2022_0047_21
ER  - 
%0 Journal Article
%A Kota, Wafaa Y.
%A El-Ashwah, Rabha Mohamed
%T Some applications of subordination theorems associated with fractional $q$-calculus operator
%J Mathematica Bohemica
%D 2023
%P 131-148
%V 148
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0047-21/
%R 10.21136/MB.2022.0047-21
%G en
%F 10_21136_MB_2022_0047_21
Kota, Wafaa Y.; El-Ashwah, Rabha Mohamed. Some applications of subordination theorems associated with fractional $q$-calculus operator. Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 131-148. doi: 10.21136/MB.2022.0047-21

[1] Abelman, S., Selvakumaran, K. A., Rashidi, M. M., Purohit, S. D.: Subordination conditions for a class of non-Bazilević type defined by using fractional $q$-calculus operators. Facta Univ., Ser. Math. Inf. 32 (2017), 255-267. | DOI | MR | JFM

[2] Al-Oboudi, F. M.: On univalent functions defined by a generalized Sălăgean operator. Int. J. Math. Math. Sci. 2004 (2004), 1429-1436. | DOI | MR | JFM

[3] Al-Oboudi, F. M., Al-Amoudi, K. A.: On classes of analytic functions related to conic domains. J. Math. Anal. Appl. 339 (2008), 655-667. | DOI | MR | JFM

[4] Aouf, M. K., Mostafa, A. O., Elmorsy, R. E.: Certain subclasses of analytic functions with varying arguments associated with $q$-difference operator. Afr. Mat. 32 (2021), 621-630. | DOI | MR | JFM

[5] Attiya, A. A.: On some applications of a subordination theorem. J. Math. Anal. Appl. 311 (2005), 489-494. | DOI | MR | JFM

[6] Cătaş, A.: On certain classes of $p$-valent functions defined by multiplier transformations. Proceedings of the International Symposium on Geometric Function Theory and Applications S. Owa, Y. Polatoglu Istanbul Kültür University Publications, Istanbul (2007), 241-250.

[7] Cho, N. E., Srivastava, H. M.: Argument estimates of certain analytic functions defined by a class of multiplier transformations. Math. Comput. Modelling 37 (2003), 39-49. | DOI | MR | JFM

[8] Duren, P. L.: Univalent Functions. Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983). | MR | JFM

[9] El-Ashwah, R. M., Aouf, M. K., Shamandy, A., Ali, E. E.: Subordination results for some subclasses of analytic functions. Math. Bohem. 136 (2011), 311-331. | DOI | MR | JFM

[10] Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications 35. Cambridge University Press, Cambridge (1990). | MR | JFM

[11] Govindaraj, M., Sivasubramanian, S.: On a class of analytic functions related to conic domains involving $q$-calculus. Anal. Math. 43 (2017), 475-487. | DOI | MR | JFM

[12] Ismail, M. E. H., Merkes, E., Styer, D.: A generalization of starlike functions. Complex Variables, Theory Appl. 14 (1990), 77-84. | DOI | MR | JFM

[13] Jackson, F. H.: On $q$-definite integrals. Quart. J. 41 (1910), 193-203 \99999JFM99999 41.0317.04.

[14] Jackson, F. H.: $q$-difference equations. Am. J. Math. 32 (1910), 305-314 \99999JFM99999 41.0502.01. | DOI | MR

[15] Littlewood, J. E.: On inequalities in the theory of functions. Proc. Lond. Math. Soc. (2) 23 (1925), 481-519 \99999JFM99999 51.0247.03. | DOI | MR

[16] Nishiwaki, J., Owa, S.: Coefficient inequalities for certain analytic functions. Int. J. Math. Math. Sci. 29 (2002), 285-290. | DOI | MR | JFM

[17] Owa, S., Nishiwaki, J.: Coefficient estimates for certain classes of analytic functions. JIPAM, J. Inequal. Pure Appl. Math. 3 (2002), Article ID 72, 5 pages. | MR | JFM

[18] Owa, S., Srivastava, H. M.: Univalent and starlike generalized hypergeometric functions. Can. J. Math. 39 (1987), 1057-1077. | DOI | MR | JFM

[19] Purohit, S. D., Raina, R. K.: Certain subclasses of analytic functions associated with fractional $q$-calculus operators. Math. Scand. 109 (2011), 55-70. | DOI | MR | JFM

[20] Sălăgean, G. S.: Subclasses of univalent functions. Complex Analysis - Fifth Romanian-Finnish Seminar. Part 1 Lecture Notes in Mathematics 1013. Springer, Berlin (1983), 362-372. | DOI | MR | JFM

[21] Silverman, H.: Univalent functions with negative coefficients. Proc. Am. Math. Soc. 51 (1975), 109-116. | DOI | MR | JFM

[22] Silverman, H.: A survey with open problems on univalent functions whose coefficients are negative. Rocky Mt. J. Math. 21 (1991), 1099-1125. | DOI | MR | JFM

[23] Silverman, H.: Integral means for univalent functions with negative coefficients. Houston J. Math. 23 (1997), 169-174. | MR | JFM

[24] Srivastava, H. M.: Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol., Trans. A, Sci. 44 (2020), 327-344. | DOI | MR

[25] Srivastava, H. M., Attiya, A. A.: Some subordination results associated with certain subclasses of analytic functions. JIPAM, J. Inequal. Pure Appl. Math. 5 (2004), Article ID 82, 6 pages. | MR | JFM

[26] Uralegaddi, B. A., Ganigi, M. D., Sarangi, S. M.: Univalent functions with positive coefficients. Tamkang J. Math. 25 (1994), 225-230. | DOI | MR | JFM

[27] Wilf, H. S.: Subordinating factor sequences for convex maps of the unit circle. Proc. Am. Math. Soc. 12 (1961), 689-693. | DOI | MR | JFM

Cité par Sources :