Keywords: analytic function; subordination principle; subordinating factor sequence; Hadamard product; $q$-difference operator; fractional $q$-calculus operator
@article{10_21136_MB_2022_0047_21,
author = {Kota, Wafaa Y. and El-Ashwah, Rabha Mohamed},
title = {Some applications of subordination theorems associated with fractional $q$-calculus operator},
journal = {Mathematica Bohemica},
pages = {131--148},
year = {2023},
volume = {148},
number = {2},
doi = {10.21136/MB.2022.0047-21},
mrnumber = {4585573},
zbl = {07729569},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0047-21/}
}
TY - JOUR AU - Kota, Wafaa Y. AU - El-Ashwah, Rabha Mohamed TI - Some applications of subordination theorems associated with fractional $q$-calculus operator JO - Mathematica Bohemica PY - 2023 SP - 131 EP - 148 VL - 148 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0047-21/ DO - 10.21136/MB.2022.0047-21 LA - en ID - 10_21136_MB_2022_0047_21 ER -
%0 Journal Article %A Kota, Wafaa Y. %A El-Ashwah, Rabha Mohamed %T Some applications of subordination theorems associated with fractional $q$-calculus operator %J Mathematica Bohemica %D 2023 %P 131-148 %V 148 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0047-21/ %R 10.21136/MB.2022.0047-21 %G en %F 10_21136_MB_2022_0047_21
Kota, Wafaa Y.; El-Ashwah, Rabha Mohamed. Some applications of subordination theorems associated with fractional $q$-calculus operator. Mathematica Bohemica, Tome 148 (2023) no. 2, pp. 131-148. doi: 10.21136/MB.2022.0047-21
[1] Abelman, S., Selvakumaran, K. A., Rashidi, M. M., Purohit, S. D.: Subordination conditions for a class of non-Bazilević type defined by using fractional $q$-calculus operators. Facta Univ., Ser. Math. Inf. 32 (2017), 255-267. | DOI | MR | JFM
[2] Al-Oboudi, F. M.: On univalent functions defined by a generalized Sălăgean operator. Int. J. Math. Math. Sci. 2004 (2004), 1429-1436. | DOI | MR | JFM
[3] Al-Oboudi, F. M., Al-Amoudi, K. A.: On classes of analytic functions related to conic domains. J. Math. Anal. Appl. 339 (2008), 655-667. | DOI | MR | JFM
[4] Aouf, M. K., Mostafa, A. O., Elmorsy, R. E.: Certain subclasses of analytic functions with varying arguments associated with $q$-difference operator. Afr. Mat. 32 (2021), 621-630. | DOI | MR | JFM
[5] Attiya, A. A.: On some applications of a subordination theorem. J. Math. Anal. Appl. 311 (2005), 489-494. | DOI | MR | JFM
[6] Cătaş, A.: On certain classes of $p$-valent functions defined by multiplier transformations. Proceedings of the International Symposium on Geometric Function Theory and Applications S. Owa, Y. Polatoglu Istanbul Kültür University Publications, Istanbul (2007), 241-250.
[7] Cho, N. E., Srivastava, H. M.: Argument estimates of certain analytic functions defined by a class of multiplier transformations. Math. Comput. Modelling 37 (2003), 39-49. | DOI | MR | JFM
[8] Duren, P. L.: Univalent Functions. Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983). | MR | JFM
[9] El-Ashwah, R. M., Aouf, M. K., Shamandy, A., Ali, E. E.: Subordination results for some subclasses of analytic functions. Math. Bohem. 136 (2011), 311-331. | DOI | MR | JFM
[10] Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications 35. Cambridge University Press, Cambridge (1990). | MR | JFM
[11] Govindaraj, M., Sivasubramanian, S.: On a class of analytic functions related to conic domains involving $q$-calculus. Anal. Math. 43 (2017), 475-487. | DOI | MR | JFM
[12] Ismail, M. E. H., Merkes, E., Styer, D.: A generalization of starlike functions. Complex Variables, Theory Appl. 14 (1990), 77-84. | DOI | MR | JFM
[13] Jackson, F. H.: On $q$-definite integrals. Quart. J. 41 (1910), 193-203 \99999JFM99999 41.0317.04.
[14] Jackson, F. H.: $q$-difference equations. Am. J. Math. 32 (1910), 305-314 \99999JFM99999 41.0502.01. | DOI | MR
[15] Littlewood, J. E.: On inequalities in the theory of functions. Proc. Lond. Math. Soc. (2) 23 (1925), 481-519 \99999JFM99999 51.0247.03. | DOI | MR
[16] Nishiwaki, J., Owa, S.: Coefficient inequalities for certain analytic functions. Int. J. Math. Math. Sci. 29 (2002), 285-290. | DOI | MR | JFM
[17] Owa, S., Nishiwaki, J.: Coefficient estimates for certain classes of analytic functions. JIPAM, J. Inequal. Pure Appl. Math. 3 (2002), Article ID 72, 5 pages. | MR | JFM
[18] Owa, S., Srivastava, H. M.: Univalent and starlike generalized hypergeometric functions. Can. J. Math. 39 (1987), 1057-1077. | DOI | MR | JFM
[19] Purohit, S. D., Raina, R. K.: Certain subclasses of analytic functions associated with fractional $q$-calculus operators. Math. Scand. 109 (2011), 55-70. | DOI | MR | JFM
[20] Sălăgean, G. S.: Subclasses of univalent functions. Complex Analysis - Fifth Romanian-Finnish Seminar. Part 1 Lecture Notes in Mathematics 1013. Springer, Berlin (1983), 362-372. | DOI | MR | JFM
[21] Silverman, H.: Univalent functions with negative coefficients. Proc. Am. Math. Soc. 51 (1975), 109-116. | DOI | MR | JFM
[22] Silverman, H.: A survey with open problems on univalent functions whose coefficients are negative. Rocky Mt. J. Math. 21 (1991), 1099-1125. | DOI | MR | JFM
[23] Silverman, H.: Integral means for univalent functions with negative coefficients. Houston J. Math. 23 (1997), 169-174. | MR | JFM
[24] Srivastava, H. M.: Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol., Trans. A, Sci. 44 (2020), 327-344. | DOI | MR
[25] Srivastava, H. M., Attiya, A. A.: Some subordination results associated with certain subclasses of analytic functions. JIPAM, J. Inequal. Pure Appl. Math. 5 (2004), Article ID 82, 6 pages. | MR | JFM
[26] Uralegaddi, B. A., Ganigi, M. D., Sarangi, S. M.: Univalent functions with positive coefficients. Tamkang J. Math. 25 (1994), 225-230. | DOI | MR | JFM
[27] Wilf, H. S.: Subordinating factor sequences for convex maps of the unit circle. Proc. Am. Math. Soc. 12 (1961), 689-693. | DOI | MR | JFM
Cité par Sources :