Keywords: boundary value problem; fixed point; positive solution; cone; existence \hbox {theorem}
@article{10_21136_MB_2022_0045_22,
author = {Padhi, Seshadev and Graef, John R.},
title = {Positive solutions of a fourth-order differential equation with integral boundary conditions},
journal = {Mathematica Bohemica},
pages = {583--601},
year = {2023},
volume = {148},
number = {4},
doi = {10.21136/MB.2022.0045-22},
mrnumber = {4673839},
zbl = {07790605},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0045-22/}
}
TY - JOUR AU - Padhi, Seshadev AU - Graef, John R. TI - Positive solutions of a fourth-order differential equation with integral boundary conditions JO - Mathematica Bohemica PY - 2023 SP - 583 EP - 601 VL - 148 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0045-22/ DO - 10.21136/MB.2022.0045-22 LA - en ID - 10_21136_MB_2022_0045_22 ER -
%0 Journal Article %A Padhi, Seshadev %A Graef, John R. %T Positive solutions of a fourth-order differential equation with integral boundary conditions %J Mathematica Bohemica %D 2023 %P 583-601 %V 148 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0045-22/ %R 10.21136/MB.2022.0045-22 %G en %F 10_21136_MB_2022_0045_22
Padhi, Seshadev; Graef, John R. Positive solutions of a fourth-order differential equation with integral boundary conditions. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 583-601. doi: 10.21136/MB.2022.0045-22
[1] Anderson, D. R., Avery, R. I.: A fourth-order four-point right focal boundary value problem. Rocky Mt. J. Math. 36 (2006), 367-380. | DOI | MR | JFM
[2] Avery, R. I., Peterson, A. C.: Three positive fixed points of nonlinear operator on ordered Banach spaces. Comput. Math. Appl. 42 (2001), 313-322. | DOI | MR | JFM
[4] Benaicha, S., Haddouchi, F.: Positive solutions of a nonlinear fourth-order integral boundary value problem. An. Univ. Vest Timiş., Ser. Mat.-Inform. 54 (2016), 73-86. | DOI | MR
[5] Graef, J. R., Qian, C., Yang, B.: A three point boundary value problem for nonlinear fourth order differential equations. J. Math. Anal. Appl. 287 (2003), 217-233. | DOI | MR | JFM
[7] Haddouchi, F., Guendouz, C., Benaicha, S.: Existence and multiplicity of positive solutions to a fourth-order multi-point boundary value problem. Mat. Vesn. 73 (2021), 25-36. | MR | JFM
[8] Han, X., Gao, H., Xu, J.: Existence of positive solutions for nonlocal fourth-order boundary value problem with variable parameter. Fixed Point Theory Appl. 2011 (2011), Article ID 604046, 11 pages. | DOI | MR | JFM
[9] Kang, P., Wei, Z., Xu, J.: Positive solutions to fourth-order singular boundary value problems with integral boundary conditions in abstract spaces. Appl. Math. Comput. 206 (2008), 245-256. | DOI | MR | JFM
[10] Krasnosel'skii, M. A.: Positive Solutions of Operator Equations. P. Noordhoff, Groningen (1964). | MR | JFM
[11] Li, Y.: Existence of positive solutions for the cantilever beam equations with fully nonlinear terms. Nonlinear Anal., Real World Appl. 27 (2016), 221-237. | DOI | MR | JFM
[13] Ma, R.: Multiple positive solutions for a semipositone fourth-order boundary value problem. Hiroshima Math. J. 33 (2003), 217-227. | DOI | MR | JFM
[14] Padhi, S., Bhuvanagiri, S.: Monotone iterative method for solutions of a cantilever beam equation with one free end. Adv. Nonlinear Var. Inequal. 23 (2020), 15-22.
[15] Padhi, S., Graef, J. R., Pati, S.: Multiple positive solutions for a boundary value problem with nonlinear nonlocal Riemann-Stieltjes integral boundary conditions. Fract. Calc. Appl. Anal. 21 (2018), 716-745. | DOI | MR | JFM
[16] Shen, W.: Positive solution for fourth-order second-point nonhomogeneous singular boundary value problems. Adv. Fixed Point Theory 5 (2015), 88-100.
[17] Sun, Y., Zhu, C.: Existence of positive solutions for singular fourth-order three-point boundary value problems. Adv. Difference Equ. 2013 (2013), Article ID 51, 13 pages. | DOI | MR | JFM
[18] Webb, J. R. L., Infante, G., Franco, D.: Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions. Proc. R. Soc. Edinb., Sect. A, Math. 138 (2008), 427-446. | DOI | MR | JFM
[19] Wei, Y., Song, Q., Bai, Z.: Existence and iterative method for some fourth order nonlinear boundary value problems. Appl. Math. Lett. 87 (2019), 101-107. | DOI | MR | JFM
[20] Yan, D., Ma, R.: Global behavior of positive solutions for some semipositone fourth-order problems. Adv. Difference Equ. 2018 (2018), Article ID 443, 14 pages. | DOI | MR | JFM
[21] Yang, B.: Positive solutions for a fourth order boundary value problem. Electron J. Qual. Theory Differ. Equ. 2005 (2005), Article ID 3, 17 pages. | DOI | MR | JFM
[22] Yang, B.: Maximum principle for a fourth order boundary value problem. Differ. Equ. Appl. 9 (2017), 495-504. | DOI | MR | JFM
[23] Zhang, M., Wei, Z.: Existence of positive solutions for fourth-order $m$-point boundary value problem with variable parameters. Appl. Math. Comput. 190 (2007), 1417-1431. | DOI | MR | JFM
[25] Zhang, X., Liu, L.: Positive solutions of fourth-order multi-point boundary value problems with bending term. Appl. Math. Comput. 194 (2007), 321-332. | DOI | MR | JFM
[26] Zou, Y.: On the existence of of positive solutions for a fourth-order boundary value problem. J. Funct. Spaces 2017 (2017), Article ID 4946198, 5 pages. | DOI | MR | JFM
Cité par Sources :