Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations
Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 35-47
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the oscillatory properties of the solutions of the third-order nonlinear semi-noncanonical delay difference equation $$ D_3y(n)+f(n)y^\beta (\sigma (n))=0, $$ where $D_3 y(n)=\Delta (b(n)\Delta (a(n)(\Delta y(n))^\alpha ))$ is studied. The main idea is to transform the semi-noncanonical operator into canonical form. Then we obtain new oscillation theorems for the studied equation. Examples are provided to illustrate the importance of the main results.
We study the oscillatory properties of the solutions of the third-order nonlinear semi-noncanonical delay difference equation $$ D_3y(n)+f(n)y^\beta (\sigma (n))=0, $$ where $D_3 y(n)=\Delta (b(n)\Delta (a(n)(\Delta y(n))^\alpha ))$ is studied. The main idea is to transform the semi-noncanonical operator into canonical form. Then we obtain new oscillation theorems for the studied equation. Examples are provided to illustrate the importance of the main results.
DOI : 10.21136/MB.2022.0036-21
Classification : 39A10
Keywords: semi-noncanonical operator; third-order; delay difference equation; oscillation
@article{10_21136_MB_2022_0036_21,
     author = {Ayyappan, Govindasamy and Chatzarakis, George E. and Kumar, Thaniarasu and Thandapani, Ethiraj},
     title = {Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations},
     journal = {Mathematica Bohemica},
     pages = {35--47},
     year = {2023},
     volume = {148},
     number = {1},
     doi = {10.21136/MB.2022.0036-21},
     mrnumber = {4536308},
     zbl = {07655811},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0036-21/}
}
TY  - JOUR
AU  - Ayyappan, Govindasamy
AU  - Chatzarakis, George E.
AU  - Kumar, Thaniarasu
AU  - Thandapani, Ethiraj
TI  - Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations
JO  - Mathematica Bohemica
PY  - 2023
SP  - 35
EP  - 47
VL  - 148
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0036-21/
DO  - 10.21136/MB.2022.0036-21
LA  - en
ID  - 10_21136_MB_2022_0036_21
ER  - 
%0 Journal Article
%A Ayyappan, Govindasamy
%A Chatzarakis, George E.
%A Kumar, Thaniarasu
%A Thandapani, Ethiraj
%T Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations
%J Mathematica Bohemica
%D 2023
%P 35-47
%V 148
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0036-21/
%R 10.21136/MB.2022.0036-21
%G en
%F 10_21136_MB_2022_0036_21
Ayyappan, Govindasamy; Chatzarakis, George E.; Kumar, Thaniarasu; Thandapani, Ethiraj. Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations. Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 35-47. doi: 10.21136/MB.2022.0036-21

[1] Agarwal, R. P.: Difference Equations and Inequalities: Theory, Methods, and Applications. Pure and Applied Mathematics, Marcel Dekker 228. Marcel Dekker, New York (2000). | DOI | MR | JFM

[2] Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D.: Discrete Oscillation Theory. Hindawi Publications, New York (2005). | DOI | MR | JFM

[3] Agarwal, R. P., Grace, S. R., O'Regan, D.: On the oscillation of certain third-order difference equations. Adv. Difference Equ. 2005 (2005), 345-367. | DOI | MR | JFM

[4] Agarwal, R. P., Grace, S. R., Wong, P. J. Y.: On the oscillation of third order nonlinear difference equations. J. Appl. Math. Comput. 32 (2010), 189-203. | DOI | MR | JFM

[5] Aktaş, M. F., Tiryaki, A., Zafer, A.: Oscillation of third-order nonlinear delay difference equations. Turk. J. Math. 36 (2012), 422-436. | DOI | MR | JFM

[6] Alzabut, J., Bohner, M., Grace, S. R.: Oscillation of nonlinear third-order difference equations with mixed neutral terms. Adv. Difference Equ. 2021 (2021), Article ID 3, 18 pages. | DOI | MR

[7] Arul, R., Ayyappan, G.: Oscillation criteria for third order neutral difference equations with distributed delay. Malaya J. Mat. 1 (2013), 1-10. | DOI | JFM

[8] Ayyappan, G., Chatzarakis, G. E., Gopal, T., Thandapani, E.: On the oscillation of third-order Emden-Fowler type difference equations with unbounded neutral term. Nonlinear Stud. 27 (2020), 1105-1115. | MR | JFM

[9] Bohner, M., Dharuman, C., Srinivasan, R., Thandapani, E.: Oscillation criteria for third-order nonlinear functional difference equations with damping. Appl. Math. Inf. Sci. 11 (2017), 669-676. | DOI | MR

[10] Došlá, Z., Kobza, A.: \kern-.635ptOn third-order linear difference equations involving quasi-differences. Adv. Difference Equ. 2006 (2006), Article ID 65652, 13 pages. | DOI | MR | JFM

[11] Gopal, T., Ayyapan, G., Arul, R.: Some new oscillation criteria of third-order half-linear neutral difference equations. Malaya J. Mat. 8 (2020), 1301-1306. | DOI | MR

[12] Grace, S. R., Agarwal, R. P., Aktas, M. F.: Oscillation criteria for third order nonlinear difference equations. Fasc. Math. 42 (2009), 39-51. | MR | JFM

[13] Grace, S. R., Agarwal, R. P., Graef, J. R.: Oscillation criteria for certain third order nonlinear difference equations. Appl. Anal. Discrete Math. 3 (2009), 27-38. | DOI | MR | JFM

[14] Graef, J. R., Thandapani, E.: Oscillatory and asymptotic behavior of solutions of third order delay difference equations. Funkc. Ekvacioj, Ser. Int. 42 (1999), 355-369. | MR | JFM

[15] Banu, S. Mehar, Banu, M. Nazreen: Oscillatory behavior of half-linear third order delay differene equations. Malaya J. Matematik S (2021), 531-536. | DOI

[16] Mohankumar, P., Ananthan, V., Ramesh, A.: Oscillation solution of third order nonlinear difference equations with delays. Int. J. Math. Comput. Research 2 (2014), 581-586.

[17] Saker, S. H., Alzabut, J. O.: Oscillatory behavior of third order nonlinear difference equations with delayed argument. Dyn. Contin. Discrete Impuls. Syst., Ser. A., Math. Anal. 17 (2010), 707-723. | MR | JFM

[18] Saker, S. H., Alzabut, J. O., Mukheimer, A.: On the oscillatory behavior for a certain class of third order nonlinear delay difference equations. Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Article ID 67, 16 pages. | DOI | MR | JFM

[19] Schmeidel, E.: Oscillatory and asymptotically zero solutions of third order difference equations with quasidifferences. Opusc. Math. 26 (2006), 361-369. | MR | JFM

[20] Shoukaku, Y.: On the oscillation of solutions of first-order difference equations with delay. Commun. Math. Anal. 20 (2017), 62-67. | MR | JFM

[21] Srinivasan, R., Dharuman, C., Graef, J. R., Thandapani, E.: Oscillation and property (B) of third order delay difference equations with a damping term. Commun. Appl. Nonlinear Anal. 26 (2019), 55-67. | MR

[22] Thandapani, E., Pandian, S., Balasubramaniam, R. K.: Oscillatory behavior of solutions of third order quasilinear delay difference equations. Stud. Univ. Žilina, Math. Ser. 19 (2005), 65-78. | MR | JFM

[23] Thandapani, E., Selvarangam, S.: Oscillation theorems for second order quasilinear neutral difference equations. J. Math. Comput. Sci. 2 (2012), 866-879. | MR

[24] Vidhayaa, K. S., Dharuman, C., Thandapani, E., Pinelas, S.: Oscillation theorems for third order nonlinear delay difference equations. Math. Bohem. 144 (2019), 25-37. | DOI | MR | JFM

Cité par Sources :