Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations
Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 35-47.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the oscillatory properties of the solutions of the third-order nonlinear semi-noncanonical delay difference equation $$ D_3y(n)+f(n)y^\beta (\sigma (n))=0, $$ where $D_3 y(n)=\Delta (b(n)\Delta (a(n)(\Delta y(n))^\alpha ))$ is studied. The main idea is to transform the semi-noncanonical operator into canonical form. Then we obtain new oscillation theorems for the studied equation. Examples are provided to illustrate the importance of the main results.
DOI : 10.21136/MB.2022.0036-21
Classification : 39A10
Keywords: semi-noncanonical operator; third-order; delay difference equation; oscillation
@article{10_21136_MB_2022_0036_21,
     author = {Ayyappan, Govindasamy and Chatzarakis, George E. and Kumar, Thaniarasu and Thandapani, Ethiraj},
     title = {Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations},
     journal = {Mathematica Bohemica},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {148},
     number = {1},
     year = {2023},
     doi = {10.21136/MB.2022.0036-21},
     mrnumber = {4536308},
     zbl = {07655811},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0036-21/}
}
TY  - JOUR
AU  - Ayyappan, Govindasamy
AU  - Chatzarakis, George E.
AU  - Kumar, Thaniarasu
AU  - Thandapani, Ethiraj
TI  - Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations
JO  - Mathematica Bohemica
PY  - 2023
SP  - 35
EP  - 47
VL  - 148
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0036-21/
DO  - 10.21136/MB.2022.0036-21
LA  - en
ID  - 10_21136_MB_2022_0036_21
ER  - 
%0 Journal Article
%A Ayyappan, Govindasamy
%A Chatzarakis, George E.
%A Kumar, Thaniarasu
%A Thandapani, Ethiraj
%T Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations
%J Mathematica Bohemica
%D 2023
%P 35-47
%V 148
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0036-21/
%R 10.21136/MB.2022.0036-21
%G en
%F 10_21136_MB_2022_0036_21
Ayyappan, Govindasamy; Chatzarakis, George E.; Kumar, Thaniarasu; Thandapani, Ethiraj. Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations. Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 35-47. doi : 10.21136/MB.2022.0036-21. http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0036-21/

Cité par Sources :