On perfect powers in $k$-generalized Pell sequence
Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 507-518
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $k\geq 2$ and let $(P_{n}^{(k)})_{n\geq 2-k}$ be the $k$-generalized Pell sequence defined by \begin {equation*} P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots +P_{n-k}^{(k)} \end {equation*}for $n\geq 2$ with initial conditions \begin {equation*} P_{-(k-2)}^{(k)}=P_{-(k-3)}^{(k)}=\cdots =P_{-1}^{(k)}=P_{0}^{(k)}=0,P_{1}^{(k)}=1. \end {equation*}In this study, we handle the equation $P_{n}^{(k)}=y^{m}$ in positive integers $n$, $m$, $y$, $k$ such that $k,y\geq 2,$ and give an upper bound on $n.$ Also, we will show that the equation $P_{n}^{(k)}=y^{m}$ with $2\leq y\leq 1000$ has only one solution given by $P_{7}^{(2)}=13^{2}.$
Let $k\geq 2$ and let $(P_{n}^{(k)})_{n\geq 2-k}$ be the $k$-generalized Pell sequence defined by \begin {equation*} P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots +P_{n-k}^{(k)} \end {equation*}for $n\geq 2$ with initial conditions \begin {equation*} P_{-(k-2)}^{(k)}=P_{-(k-3)}^{(k)}=\cdots =P_{-1}^{(k)}=P_{0}^{(k)}=0,P_{1}^{(k)}=1. \end {equation*}In this study, we handle the equation $P_{n}^{(k)}=y^{m}$ in positive integers $n$, $m$, $y$, $k$ such that $k,y\geq 2,$ and give an upper bound on $n.$ Also, we will show that the equation $P_{n}^{(k)}=y^{m}$ with $2\leq y\leq 1000$ has only one solution given by $P_{7}^{(2)}=13^{2}.$
DOI : 10.21136/MB.2022.0033-22
Classification : 11B39, 11D61, 11J86
Keywords: Fibonacci and Lucas numbers; exponential Diophantine equation; linear forms in logarithms; Baker's method
@article{10_21136_MB_2022_0033_22,
     author = {\c{S}iar, Zafer and Keskin, Refik and \"Ozta\c{s}, Elif Segah},
     title = {On perfect powers in $k$-generalized {Pell} sequence},
     journal = {Mathematica Bohemica},
     pages = {507--518},
     year = {2023},
     volume = {148},
     number = {4},
     doi = {10.21136/MB.2022.0033-22},
     mrnumber = {4673834},
     zbl = {07790600},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0033-22/}
}
TY  - JOUR
AU  - Şiar, Zafer
AU  - Keskin, Refik
AU  - Öztaş, Elif Segah
TI  - On perfect powers in $k$-generalized Pell sequence
JO  - Mathematica Bohemica
PY  - 2023
SP  - 507
EP  - 518
VL  - 148
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0033-22/
DO  - 10.21136/MB.2022.0033-22
LA  - en
ID  - 10_21136_MB_2022_0033_22
ER  - 
%0 Journal Article
%A Şiar, Zafer
%A Keskin, Refik
%A Öztaş, Elif Segah
%T On perfect powers in $k$-generalized Pell sequence
%J Mathematica Bohemica
%D 2023
%P 507-518
%V 148
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0033-22/
%R 10.21136/MB.2022.0033-22
%G en
%F 10_21136_MB_2022_0033_22
Şiar, Zafer; Keskin, Refik; Öztaş, Elif Segah. On perfect powers in $k$-generalized Pell sequence. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 507-518. doi: 10.21136/MB.2022.0033-22

[1] Baker, A., Davenport, H.: The equations $3x^2-2 = y^2$ and $8x^2-7 = z^2$. Q. J. Math., Oxf. II. Ser. 20 (1969), 129-137. | DOI | MR | JFM

[2] Bravo, J. J., Gómez, C. A., Luca, F.: Powers of two as sums of two $k$-Fibonacci numbers. Miskolc Math. Notes 17 (2016), 85-100. | DOI | MR | JFM

[3] Bravo, J. J., Herrera, J. L.: Repdigits in generalized Pell sequences. Arch. Math., Brno 56 (2020), 249-262. | DOI | MR | JFM

[4] Bravo, J. J., Herrera, J. L., Luca, F.: Common values of generalized Fibonacci and Pell sequences. J. Number Theory 226 (2021), 51-71. | DOI | MR | JFM

[5] Bravo, J. J., Herrera, J. L., Luca, F.: On a generalization of the Pell sequence. Math. Bohem. 146 (2021), 199-213. | DOI | MR | JFM

[6] Bravo, J. J., Luca, F.: Powers of two in generalized Fibonacci sequences. Rev. Colomb. Mat. 46 (2012), 67-79. | MR | JFM

[7] Bugeaud, Y.: Linear Forms in Logarithms and Applications. IRMA Lectures in Mathematics and Theoretical Physics 28. European Mathematical Society, Zürich (2018). | DOI | MR | JFM

[8] Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers. Ann. Math. (2) 163 (2006), 969-1018. | DOI | MR | JFM

[9] Cohn, J. H. E.: Square Fibonacci numbers, etc. Fibonacci Q. 2 (1964), 109-113. | MR | JFM

[10] Cohn, J. H. E.: Perfect Pell powers. Glasg. Math. J. 38 (1996), 19-20. | DOI | MR | JFM

[11] Weger, B. M. M. de: Algorithms for Diophantine Equations. CWI Tracts 65. Centrum voor Wiskunde en Informatica, Amsterdam (1989). | MR | JFM

[12] Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport. Q. J. Math., Oxf. II. Ser. 49 (1998), 291-306. | DOI | MR | JFM

[13] Kiliç, E., Taşci, D.: The generalized Binet formula, representation and sums of the generalized order-$k$ Pell numbers. Taiwanese J. Math. 10 (2006), 1661-1670. | DOI | MR | JFM

[14] Ljunggren, W.: Zur Theorie der Gleichung $x^2+1=Dy^4$. Avh. Norske Vid. Akad. Oslo 5 (1942), 1-27 German. | MR | JFM

[15] Matveev, E. M.: An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II. Izv. Math. 64 (2000), 1217-1269 translation from Izv. Ross. Akad. Nauk, Ser. Mat. 64 2000 125-180. | DOI | MR | JFM

[16] Pethő, A.: The Pell sequence contains only trivial perfect powers. Sets, Graphs and Numbers Colloquia Mathematica Societatis János Bolyai 60. North Holland, Amsterdam (1992), 561-568. | MR | JFM

[17] Sanchez, S. G., Luca, F.: Linear combinations of factorials and $S$-units in a binary recurrence sequence. Ann. Math. Qué. 38 (2014), 169-188. | DOI | MR | JFM

[18] Şiar, Z., Keskin, R.: On perfect powers in $k$-generalized Pell-Lucas sequence. Available at , 17 pages. | arXiv | MR

[19] Wu, Z., Zhang, H.: On the reciprocal sums of higher-order sequences. Adv. Difference Equ. 2013 (2013), Article ID 189, 8 pages. | DOI | MR | JFM

Cité par Sources :