On perfect powers in $k$-generalized Pell sequence
Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 507-518
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $k\geq 2$ and let $(P_{n}^{(k)})_{n\geq 2-k}$ be the $k$-generalized Pell sequence defined by \begin {equation*} P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots +P_{n-k}^{(k)} \end {equation*}for $n\geq 2$ with initial conditions \begin {equation*} P_{-(k-2)}^{(k)}=P_{-(k-3)}^{(k)}=\cdots =P_{-1}^{(k)}=P_{0}^{(k)}=0,P_{1}^{(k)}=1. \end {equation*}In this study, we handle the equation $P_{n}^{(k)}=y^{m}$ in positive integers $n$, $m$, $y$, $k$ such that $k,y\geq 2,$ and give an upper bound on $n.$ Also, we will show that the equation $P_{n}^{(k)}=y^{m}$ with $2\leq y\leq 1000$ has only one solution given by $P_{7}^{(2)}=13^{2}.$
Classification :
11B39, 11D61, 11J86
Keywords: Fibonacci and Lucas numbers; exponential Diophantine equation; linear forms in logarithms; Baker's method
Keywords: Fibonacci and Lucas numbers; exponential Diophantine equation; linear forms in logarithms; Baker's method
@article{10_21136_MB_2022_0033_22,
author = {\c{S}iar, Zafer and Keskin, Refik and \"Ozta\c{s}, Elif Segah},
title = {On perfect powers in $k$-generalized {Pell} sequence},
journal = {Mathematica Bohemica},
pages = {507--518},
publisher = {mathdoc},
volume = {148},
number = {4},
year = {2023},
doi = {10.21136/MB.2022.0033-22},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0033-22/}
}
TY - JOUR AU - Şiar, Zafer AU - Keskin, Refik AU - Öztaş, Elif Segah TI - On perfect powers in $k$-generalized Pell sequence JO - Mathematica Bohemica PY - 2023 SP - 507 EP - 518 VL - 148 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0033-22/ DO - 10.21136/MB.2022.0033-22 LA - en ID - 10_21136_MB_2022_0033_22 ER -
%0 Journal Article %A Şiar, Zafer %A Keskin, Refik %A Öztaş, Elif Segah %T On perfect powers in $k$-generalized Pell sequence %J Mathematica Bohemica %D 2023 %P 507-518 %V 148 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0033-22/ %R 10.21136/MB.2022.0033-22 %G en %F 10_21136_MB_2022_0033_22
Şiar, Zafer; Keskin, Refik; Öztaş, Elif Segah. On perfect powers in $k$-generalized Pell sequence. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 507-518. doi: 10.21136/MB.2022.0033-22
Cité par Sources :