On perfect powers in $k$-generalized Pell sequence
Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 507-518.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $k\geq 2$ and let $(P_{n}^{(k)})_{n\geq 2-k}$ be the $k$-generalized Pell sequence defined by \begin {equation*} P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots +P_{n-k}^{(k)} \end {equation*}for $n\geq 2$ with initial conditions \begin {equation*} P_{-(k-2)}^{(k)}=P_{-(k-3)}^{(k)}=\cdots =P_{-1}^{(k)}=P_{0}^{(k)}=0,P_{1}^{(k)}=1. \end {equation*}In this study, we handle the equation $P_{n}^{(k)}=y^{m}$ in positive integers $n$, $m$, $y$, $k$ such that $k,y\geq 2,$ and give an upper bound on $n.$ Also, we will show that the equation $P_{n}^{(k)}=y^{m}$ with $2\leq y\leq 1000$ has only one solution given by $P_{7}^{(2)}=13^{2}.$
DOI : 10.21136/MB.2022.0033-22
Classification : 11B39, 11D61, 11J86
Keywords: Fibonacci and Lucas numbers; exponential Diophantine equation; linear forms in logarithms; Baker's method
@article{10_21136_MB_2022_0033_22,
     author = {\c{S}iar, Zafer and Keskin, Refik and \"Ozta\c{s}, Elif Segah},
     title = {On perfect powers in $k$-generalized {Pell} sequence},
     journal = {Mathematica Bohemica},
     pages = {507--518},
     publisher = {mathdoc},
     volume = {148},
     number = {4},
     year = {2023},
     doi = {10.21136/MB.2022.0033-22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0033-22/}
}
TY  - JOUR
AU  - Şiar, Zafer
AU  - Keskin, Refik
AU  - Öztaş, Elif Segah
TI  - On perfect powers in $k$-generalized Pell sequence
JO  - Mathematica Bohemica
PY  - 2023
SP  - 507
EP  - 518
VL  - 148
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0033-22/
DO  - 10.21136/MB.2022.0033-22
LA  - en
ID  - 10_21136_MB_2022_0033_22
ER  - 
%0 Journal Article
%A Şiar, Zafer
%A Keskin, Refik
%A Öztaş, Elif Segah
%T On perfect powers in $k$-generalized Pell sequence
%J Mathematica Bohemica
%D 2023
%P 507-518
%V 148
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0033-22/
%R 10.21136/MB.2022.0033-22
%G en
%F 10_21136_MB_2022_0033_22
Şiar, Zafer; Keskin, Refik; Öztaş, Elif Segah. On perfect powers in $k$-generalized Pell sequence. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 507-518. doi : 10.21136/MB.2022.0033-22. http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0033-22/

Cité par Sources :