An inequality for Fibonacci numbers
Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 587-590
We extend an inequality for Fibonacci numbers published by P. G. Popescu and J. L. Díaz-Barrero in 2006.
We extend an inequality for Fibonacci numbers published by P. G. Popescu and J. L. Díaz-Barrero in 2006.
@article{10_21136_MB_2022_0032_21,
author = {Alzer, Horst and Luca, Florian},
title = {An inequality for {Fibonacci} numbers},
journal = {Mathematica Bohemica},
pages = {587--590},
year = {2022},
volume = {147},
number = {4},
doi = {10.21136/MB.2022.0032-21},
mrnumber = {4512175},
zbl = {07655828},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0032-21/}
}
Alzer, Horst; Luca, Florian. An inequality for Fibonacci numbers. Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 587-590. doi: 10.21136/MB.2022.0032-21
[1] Koshy, T.: Fibonacci and Lucas Numbers with Applications. Volume I. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley & Sons, New York (2001). | DOI | MR | JFM
[2] Popescu, P. G., Díaz-Barrero, J. L.: Certain inequalities for convex functions. JIPAM, J. Inequal. Pure Appl. Math. 7 (2006), Article ID 41, 5 pages. | MR | JFM
Cité par Sources :