Does the endomorphism poset $P^P$ determine whether a finite poset $P$ is connected? An issue Duffus raised in 1978
Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 435-446.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Duffus wrote in his 1978 Ph.D. thesis, ``It is not obvious that $P$ is connected and $P^P\cong Q^Q$ imply that $Q$ is connected'', where $P$ and $Q$ are finite nonempty posets. We show that, indeed, under these hypotheses $Q$ is connected and $P\cong Q$.
DOI : 10.21136/MB.2022.0010-22
Classification : 06A07
Keywords: (partially) ordered set; exponentiation; connected
@article{10_21136_MB_2022_0010_22,
     author = {Farley, Jonathan David},
     title = {Does the endomorphism poset $P^P$ determine whether a finite poset $P$ is connected? {An} issue {Duffus} raised in 1978},
     journal = {Mathematica Bohemica},
     pages = {435--446},
     publisher = {mathdoc},
     volume = {148},
     number = {4},
     year = {2023},
     doi = {10.21136/MB.2022.0010-22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0010-22/}
}
TY  - JOUR
AU  - Farley, Jonathan David
TI  - Does the endomorphism poset $P^P$ determine whether a finite poset $P$ is connected? An issue Duffus raised in 1978
JO  - Mathematica Bohemica
PY  - 2023
SP  - 435
EP  - 446
VL  - 148
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0010-22/
DO  - 10.21136/MB.2022.0010-22
LA  - en
ID  - 10_21136_MB_2022_0010_22
ER  - 
%0 Journal Article
%A Farley, Jonathan David
%T Does the endomorphism poset $P^P$ determine whether a finite poset $P$ is connected? An issue Duffus raised in 1978
%J Mathematica Bohemica
%D 2023
%P 435-446
%V 148
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0010-22/
%R 10.21136/MB.2022.0010-22
%G en
%F 10_21136_MB_2022_0010_22
Farley, Jonathan David. Does the endomorphism poset $P^P$ determine whether a finite poset $P$ is connected? An issue Duffus raised in 1978. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 435-446. doi : 10.21136/MB.2022.0010-22. http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0010-22/

Cité par Sources :