Keywords: (partially) ordered set; exponentiation; connected
@article{10_21136_MB_2022_0010_22,
author = {Farley, Jonathan David},
title = {Does the endomorphism poset $P^P$ determine whether a finite poset $P$ is connected? {An} issue {Duffus} raised in 1978},
journal = {Mathematica Bohemica},
pages = {435--446},
year = {2023},
volume = {148},
number = {4},
doi = {10.21136/MB.2022.0010-22},
mrnumber = {4673829},
zbl = {07790595},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0010-22/}
}
TY - JOUR AU - Farley, Jonathan David TI - Does the endomorphism poset $P^P$ determine whether a finite poset $P$ is connected? An issue Duffus raised in 1978 JO - Mathematica Bohemica PY - 2023 SP - 435 EP - 446 VL - 148 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0010-22/ DO - 10.21136/MB.2022.0010-22 LA - en ID - 10_21136_MB_2022_0010_22 ER -
%0 Journal Article %A Farley, Jonathan David %T Does the endomorphism poset $P^P$ determine whether a finite poset $P$ is connected? An issue Duffus raised in 1978 %J Mathematica Bohemica %D 2023 %P 435-446 %V 148 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0010-22/ %R 10.21136/MB.2022.0010-22 %G en %F 10_21136_MB_2022_0010_22
Farley, Jonathan David. Does the endomorphism poset $P^P$ determine whether a finite poset $P$ is connected? An issue Duffus raised in 1978. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 435-446. doi: 10.21136/MB.2022.0010-22
[1] Birkhoff, G.: An extended arithmetic. Duke Math. J. 3 (1937), 311-316. | DOI | MR | JFM
[2] Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publications 25. AMS, New York (1948). | MR | JFM
[3] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002). | DOI | MR | JFM
[4] Duffus, D. A.: Toward a Theory of Finite Partially Ordered Sets: Ph.D. Thesis. University of Calgary, Calgary (1978). | MR
[5] Duffus, D.: Automorphisms and products of ordered sets. Algebra Univers. 19 (1984), 366-369. | DOI | MR | JFM
[6] Duffus, D.: Powers of ordered sets. Order 1 (1984), 83-92. | DOI | MR | JFM
[7] Duffus, D., Rival, I.: A logarithmic property for exponents of partially ordered sets. Can. J. Math. 30 (1978), 797-807. | DOI | MR | JFM
[8] Duffus, D., Wille, R.: A theorem on partially ordered sets of order-preserving mappings. Proc. Am. Math. Soc. 76 (1979), 14-16. | DOI | MR | JFM
[9] Farley, J. D.: An issue raised in 1978 by a then-future editor-in-chief of the Journal ``Order'': Does the endomorphism poset of a finite connected poset tell us that the poset is connected?. Available at , 12 pages. | arXiv | MR
[10] Farley, J. D.: Another problem of Jónsson and McKenzie from 1982: Refinement properties for connected powers of posets. Algebra Univers. 82 (2021), Article ID 48, 6 pages. | DOI | MR | JFM
[11] Farley, J. D.: Poset exponentiation and a counterexample Birkhoff said in 1942 he did not have. Order 39 (2022), 243-250. | DOI | MR | JFM
[12] Jónsson, B., McKenzie, R.: Powers of partially ordered sets: Cancellation and refinement properties. Math. Scand. 51 (1982), 87-120. | DOI | MR | JFM
[13] Lovász, L.: Operations with structures. Acta Math. Acad. Sci. Hung. 18 (1967), 321-328. | DOI | MR | JFM
[14] McKenzie, R.: Cardinal multiplication of structures with a reflexive relation. Fundam. Math. 70 (1971), 59-101. | DOI | MR | JFM
[15] McKenzie, R.: Arithmetic of finite ordered sets: Cancellation of exponents, II. Order 17 (2000), 309-332. | DOI | MR | JFM
[16] McKenzie, R.: The zig-zag property and exponential cancellation of ordered sets. Order 20 (2003), 185-221. | DOI | MR | JFM
[17] Schröder, B.: Ordered Sets: An Introduction with Connections from Combinatorics to Topology. Birkhäuser, Basel (2016). | DOI | MR | JFM
Cité par Sources :