Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_21136_MB_2022_0010_22, author = {Farley, Jonathan David}, title = {Does the endomorphism poset $P^P$ determine whether a finite poset $P$ is connected? {An} issue {Duffus} raised in 1978}, journal = {Mathematica Bohemica}, pages = {435--446}, publisher = {mathdoc}, volume = {148}, number = {4}, year = {2023}, doi = {10.21136/MB.2022.0010-22}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0010-22/} }
TY - JOUR AU - Farley, Jonathan David TI - Does the endomorphism poset $P^P$ determine whether a finite poset $P$ is connected? An issue Duffus raised in 1978 JO - Mathematica Bohemica PY - 2023 SP - 435 EP - 446 VL - 148 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0010-22/ DO - 10.21136/MB.2022.0010-22 LA - en ID - 10_21136_MB_2022_0010_22 ER -
%0 Journal Article %A Farley, Jonathan David %T Does the endomorphism poset $P^P$ determine whether a finite poset $P$ is connected? An issue Duffus raised in 1978 %J Mathematica Bohemica %D 2023 %P 435-446 %V 148 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0010-22/ %R 10.21136/MB.2022.0010-22 %G en %F 10_21136_MB_2022_0010_22
Farley, Jonathan David. Does the endomorphism poset $P^P$ determine whether a finite poset $P$ is connected? An issue Duffus raised in 1978. Mathematica Bohemica, Tome 148 (2023) no. 4, pp. 435-446. doi : 10.21136/MB.2022.0010-22. http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0010-22/
Cité par Sources :