Homogeneous colourings of graphs
Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 105-115.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A proper vertex $k$-colouring of a graph $G$ is called $l$-homogeneous if the number of colours in the neigbourhood of each vertex of $G$ equals $l$. We explore basic properties (the existence and the number of used colours) of homogeneous colourings of graphs in general as well as of some specific graph families, in particular planar graphs.
DOI : 10.21136/MB.2022.0007-21
Classification : 05C15
Keywords: proper colouring; homogeneous colouring; planar graph; triangulation
@article{10_21136_MB_2022_0007_21,
     author = {Madaras, Tom\'a\v{s} and \v{S}urimov\'a, M\'aria},
     title = {Homogeneous colourings of graphs},
     journal = {Mathematica Bohemica},
     pages = {105--115},
     publisher = {mathdoc},
     volume = {148},
     number = {1},
     year = {2023},
     doi = {10.21136/MB.2022.0007-21},
     mrnumber = {4536313},
     zbl = {07655816},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0007-21/}
}
TY  - JOUR
AU  - Madaras, Tomáš
AU  - Šurimová, Mária
TI  - Homogeneous colourings of graphs
JO  - Mathematica Bohemica
PY  - 2023
SP  - 105
EP  - 115
VL  - 148
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0007-21/
DO  - 10.21136/MB.2022.0007-21
LA  - en
ID  - 10_21136_MB_2022_0007_21
ER  - 
%0 Journal Article
%A Madaras, Tomáš
%A Šurimová, Mária
%T Homogeneous colourings of graphs
%J Mathematica Bohemica
%D 2023
%P 105-115
%V 148
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0007-21/
%R 10.21136/MB.2022.0007-21
%G en
%F 10_21136_MB_2022_0007_21
Madaras, Tomáš; Šurimová, Mária. Homogeneous colourings of graphs. Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 105-115. doi : 10.21136/MB.2022.0007-21. http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0007-21/

Cité par Sources :