Homogeneous colourings of graphs
Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 105-115
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A proper vertex $k$-colouring of a graph $G$ is called $l$-homogeneous if the number of colours in the neigbourhood of each vertex of $G$ equals $l$. We explore basic properties (the existence and the number of used colours) of homogeneous colourings of graphs in general as well as of some specific graph families, in particular planar graphs.
DOI :
10.21136/MB.2022.0007-21
Classification :
05C15
Keywords: proper colouring; homogeneous colouring; planar graph; triangulation
Keywords: proper colouring; homogeneous colouring; planar graph; triangulation
@article{10_21136_MB_2022_0007_21,
author = {Madaras, Tom\'a\v{s} and \v{S}urimov\'a, M\'aria},
title = {Homogeneous colourings of graphs},
journal = {Mathematica Bohemica},
pages = {105--115},
publisher = {mathdoc},
volume = {148},
number = {1},
year = {2023},
doi = {10.21136/MB.2022.0007-21},
mrnumber = {4536313},
zbl = {07655816},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0007-21/}
}
TY - JOUR AU - Madaras, Tomáš AU - Šurimová, Mária TI - Homogeneous colourings of graphs JO - Mathematica Bohemica PY - 2023 SP - 105 EP - 115 VL - 148 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2022.0007-21/ DO - 10.21136/MB.2022.0007-21 LA - en ID - 10_21136_MB_2022_0007_21 ER -
Madaras, Tomáš; Šurimová, Mária. Homogeneous colourings of graphs. Mathematica Bohemica, Tome 148 (2023) no. 1, pp. 105-115. doi: 10.21136/MB.2022.0007-21
Cité par Sources :