Direct summands of Goldie extending elements in modular lattices
Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 359-368
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper some results on direct summands of Goldie extending elements are studied in a modular lattice. An element $a$ of a lattice $L$ with $0$ is said to be a Goldie extending element if and only if for every $b \leq a$ there exists a direct summand $c$ of $a$ such that $b \wedge c$ is essential in both $b$ and $c$. Some characterizations of decomposition of a Goldie extending element in a modular lattice are obtained.
DOI :
10.21136/MB.2021.0181-20
Classification :
06B10, 06C05
Keywords: modular lattice; direct summand; Goldie extending element
Keywords: modular lattice; direct summand; Goldie extending element
@article{10_21136_MB_2021_0181_20,
author = {Shroff, Rupal},
title = {Direct summands of {Goldie} extending elements in modular lattices},
journal = {Mathematica Bohemica},
pages = {359--368},
publisher = {mathdoc},
volume = {147},
number = {3},
year = {2022},
doi = {10.21136/MB.2021.0181-20},
mrnumber = {4482311},
zbl = {07584130},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0181-20/}
}
TY - JOUR AU - Shroff, Rupal TI - Direct summands of Goldie extending elements in modular lattices JO - Mathematica Bohemica PY - 2022 SP - 359 EP - 368 VL - 147 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0181-20/ DO - 10.21136/MB.2021.0181-20 LA - en ID - 10_21136_MB_2021_0181_20 ER -
Shroff, Rupal. Direct summands of Goldie extending elements in modular lattices. Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 359-368. doi: 10.21136/MB.2021.0181-20
Cité par Sources :