Direct summands of Goldie extending elements in modular lattices
Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 359-368
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper some results on direct summands of Goldie extending elements are studied in a modular lattice. An element $a$ of a lattice $L$ with $0$ is said to be a Goldie extending element if and only if for every $b \leq a$ there exists a direct summand $c$ of $a$ such that $b \wedge c$ is essential in both $b$ and $c$. Some characterizations of decomposition of a Goldie extending element in a modular lattice are obtained.
In this paper some results on direct summands of Goldie extending elements are studied in a modular lattice. An element $a$ of a lattice $L$ with $0$ is said to be a Goldie extending element if and only if for every $b \leq a$ there exists a direct summand $c$ of $a$ such that $b \wedge c$ is essential in both $b$ and $c$. Some characterizations of decomposition of a Goldie extending element in a modular lattice are obtained.
DOI : 10.21136/MB.2021.0181-20
Classification : 06B10, 06C05
Keywords: modular lattice; direct summand; Goldie extending element
@article{10_21136_MB_2021_0181_20,
     author = {Shroff, Rupal},
     title = {Direct summands of {Goldie} extending elements in modular lattices},
     journal = {Mathematica Bohemica},
     pages = {359--368},
     year = {2022},
     volume = {147},
     number = {3},
     doi = {10.21136/MB.2021.0181-20},
     mrnumber = {4482311},
     zbl = {07584130},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0181-20/}
}
TY  - JOUR
AU  - Shroff, Rupal
TI  - Direct summands of Goldie extending elements in modular lattices
JO  - Mathematica Bohemica
PY  - 2022
SP  - 359
EP  - 368
VL  - 147
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0181-20/
DO  - 10.21136/MB.2021.0181-20
LA  - en
ID  - 10_21136_MB_2021_0181_20
ER  - 
%0 Journal Article
%A Shroff, Rupal
%T Direct summands of Goldie extending elements in modular lattices
%J Mathematica Bohemica
%D 2022
%P 359-368
%V 147
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0181-20/
%R 10.21136/MB.2021.0181-20
%G en
%F 10_21136_MB_2021_0181_20
Shroff, Rupal. Direct summands of Goldie extending elements in modular lattices. Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 359-368. doi: 10.21136/MB.2021.0181-20

[1] Akalan, E., Birkenmeier, G. F., Tercan, A.: Goldie extending modules. Commun. Algebra 37 (2009), 663-683. | DOI | MR | JFM

[2] Călugăreanu, G.: Lattice Concepts of Module Theory. Kluwer Texts in the Mathematical Sciences 22. Kluwer, Dordrecht (2000). | DOI | MR | JFM

[3] Crawley, P., Dilworth, R. P.: Algebraic Theory of Lattices. Prentice Hall, Engelwood Cliffs (1973). | JFM

[4] Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R.: Extending Modules. Pitman Research Notes in Mathematics Series 313. Longman Scientific, Harlow (1994). | MR | JFM

[5] Grätzer, G.: General Lattice Theory. Birkhäuser, Basel (1998). | DOI | MR | JFM

[6] Grzeszczuk, P., Puczyłowski, E. R.: On Goldie and dual Goldie dimensions. J. Pure Appl. Algebra 31 (1984), 47-54. | DOI | MR | JFM

[7] Harmanci, A., Smith, P. F.: Finite direct sums of CS-modules. Houston J. Math. 19 (1993), 523-532. | MR | JFM

[8] Nimbhorkar, S. K., Shroff, R. C.: Ojective ideals in modular lattices. Czech. Math. J. 65 (2015), 161-178. | DOI | MR | JFM

[9] Nimbhorkar, S. K., Shroff, R. C.: Goldie extending elements in modular lattices. Math. Bohem. 142 (2017), 163-180. | DOI | MR | JFM

[10] Tercan, A., Yücel, C. C.: Module Theory: Extending Modules and Generalizations. Frontiers in Mathematics. Birkhäuser, Basel (2016). | DOI | MR | JFM

[11] Wu, D., Wang, Y.: Two open questions on Goldie extending modules. Commun. Algebra 40 (2012), 2685-2692. | DOI | MR | JFM

Cité par Sources :