Direct summands of Goldie extending elements in modular lattices
Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 359-368.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper some results on direct summands of Goldie extending elements are studied in a modular lattice. An element $a$ of a lattice $L$ with $0$ is said to be a Goldie extending element if and only if for every $b \leq a$ there exists a direct summand $c$ of $a$ such that $b \wedge c$ is essential in both $b$ and $c$. Some characterizations of decomposition of a Goldie extending element in a modular lattice are obtained.
DOI : 10.21136/MB.2021.0181-20
Classification : 06B10, 06C05
Keywords: modular lattice; direct summand; Goldie extending element
@article{10_21136_MB_2021_0181_20,
     author = {Shroff, Rupal},
     title = {Direct summands of {Goldie} extending elements in modular lattices},
     journal = {Mathematica Bohemica},
     pages = {359--368},
     publisher = {mathdoc},
     volume = {147},
     number = {3},
     year = {2022},
     doi = {10.21136/MB.2021.0181-20},
     mrnumber = {4482311},
     zbl = {07584130},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0181-20/}
}
TY  - JOUR
AU  - Shroff, Rupal
TI  - Direct summands of Goldie extending elements in modular lattices
JO  - Mathematica Bohemica
PY  - 2022
SP  - 359
EP  - 368
VL  - 147
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0181-20/
DO  - 10.21136/MB.2021.0181-20
LA  - en
ID  - 10_21136_MB_2021_0181_20
ER  - 
%0 Journal Article
%A Shroff, Rupal
%T Direct summands of Goldie extending elements in modular lattices
%J Mathematica Bohemica
%D 2022
%P 359-368
%V 147
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0181-20/
%R 10.21136/MB.2021.0181-20
%G en
%F 10_21136_MB_2021_0181_20
Shroff, Rupal. Direct summands of Goldie extending elements in modular lattices. Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 359-368. doi : 10.21136/MB.2021.0181-20. http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0181-20/

Cité par Sources :