The Niemytzki plane is $\varkappa $-metrizable
Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 457-469
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that the Niemytzki plane is $\varkappa $-metrizable and we try to explain the differences between the concepts of a stratifiable space and a $\varkappa $-metrizable space. Also, we give a characterisation of $\varkappa $-metrizable spaces which is modelled on the version described by Chigogidze.
We prove that the Niemytzki plane is $\varkappa $-metrizable and we try to explain the differences between the concepts of a stratifiable space and a $\varkappa $-metrizable space. Also, we give a characterisation of $\varkappa $-metrizable spaces which is modelled on the version described by Chigogidze.
DOI : 10.21136/MB.2021.0177-19
Classification : 54D15, 54E35, 54G20
Keywords: stratifiable space; $\varkappa $-metrizable space; Niemytzki plane; Sorgenfrey line
@article{10_21136_MB_2021_0177_19,
     author = {Bielas, Wojciech and Kucharski, Andrzej and Plewik, Szymon},
     title = {The {Niemytzki} plane is $\varkappa $-metrizable},
     journal = {Mathematica Bohemica},
     pages = {457--469},
     year = {2021},
     volume = {146},
     number = {4},
     doi = {10.21136/MB.2021.0177-19},
     mrnumber = {4336550},
     zbl = {07442513},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0177-19/}
}
TY  - JOUR
AU  - Bielas, Wojciech
AU  - Kucharski, Andrzej
AU  - Plewik, Szymon
TI  - The Niemytzki plane is $\varkappa $-metrizable
JO  - Mathematica Bohemica
PY  - 2021
SP  - 457
EP  - 469
VL  - 146
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0177-19/
DO  - 10.21136/MB.2021.0177-19
LA  - en
ID  - 10_21136_MB_2021_0177_19
ER  - 
%0 Journal Article
%A Bielas, Wojciech
%A Kucharski, Andrzej
%A Plewik, Szymon
%T The Niemytzki plane is $\varkappa $-metrizable
%J Mathematica Bohemica
%D 2021
%P 457-469
%V 146
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0177-19/
%R 10.21136/MB.2021.0177-19
%G en
%F 10_21136_MB_2021_0177_19
Bielas, Wojciech; Kucharski, Andrzej; Plewik, Szymon. The Niemytzki plane is $\varkappa $-metrizable. Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 457-469. doi: 10.21136/MB.2021.0177-19

[1] Bielas, W., Plewik, Sz.: On $RC$-spaces. Arab. J. Math. 9 (2020), 83-88. | DOI | MR | JFM

[2] Borges, C. J. R.: On stratifiable spaces. Pac. J. Math. 17 (1966), 1-16. | DOI | MR | JFM

[3] Ceder, J. G.: Some generalizations of metric spaces. Pac. J. Math. 11 (1961), 105-125. | DOI | MR | JFM

[4] Chigogidze, A. Ch.: On $\kappa$-metrizable spaces. Russ. Math. Surv. 37 (1982), 209-210 translation from Uspekhi Mat. Nauk 37 1982 241-242. | DOI | MR | JFM

[5] Engelking, R.: General Topology. Sigma Series in Pure Mathematics 6. Heldermann Verlag, Berlin (1989). | MR | JFM

[6] Kalantan, L.: Results about $\kappa$-normality. Topology Appl. 125 (2002), 47-62. | DOI | MR | JFM

[7] Kalemba, P., Plewik, Sz.: On regular but not completely regular spaces. Topology Appl. 252 (2019), 191-197. | DOI | MR | JFM

[8] Shchepin, E. V.: Topology of limit spaces with uncountable inverse spectra. Russ. Math. Surv. 31 (1976), 155-191 translation from Uspekhi Mat. Nauk 31 1976 191-226. | DOI | MR | JFM

[9] Shchepin, E. V.: On $\kappa$-metrizable spaces. Izv. Akad. Nauk SSSR, Ser. Mat. 43 (1979), 442-478 Russian. | MR | JFM

[10] Sierpiński, W.: Introduction to General Topology. University of Toronto Press, Toronto (1934). | JFM

[11] L. A. Steen, J. A. Seebach, Jr.: Counterexamples in Topology. Holt, Rinehart and Winston, New York (1970). | MR | JFM

[12] Suzuki, J., Tamano, K., Tanaka, Y.: $\kappa$-metrizable spaces, stratifiable spaces and metrization. Proc. Am. Math. Soc. 105 (1989), 500-509. | DOI | MR | JFM

Cité par Sources :