Global well-posedness for the Klein-Gordon-Schrödinger system with higher order coupling
Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 461-470.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Global well-posedness for the Klein-Gordon-Schrödinger system with generalized higher order coupling, which is a system of PDEs in two variables arising from quantum physics, is proven. It is shown that the system is globally well-posed in $(u,n)\in L^2\times L^2$ under some conditions on the nonlinearity (the coupling term), by using the $L^2$ conservation law for $u$ and controlling the growth of $n$ via the estimates in the local theory. In particular, this extends the well-posedness results for such a system in Miao, Xu (2007) for some exponents to other dimensions and in lower regularity spaces.
DOI : 10.21136/MB.2021.0172-20
Classification : 35G55, 35Q40
Keywords: low regularity; global well-posedness; Klein-Gordon-Schrödinger equation; higher order coupling
@article{10_21136_MB_2021_0172_20,
     author = {Soenjaya, Agus Leonardi},
     title = {Global well-posedness for the {Klein-Gordon-Schr\"odinger} system with higher order coupling},
     journal = {Mathematica Bohemica},
     pages = {461--470},
     publisher = {mathdoc},
     volume = {147},
     number = {4},
     year = {2022},
     doi = {10.21136/MB.2021.0172-20},
     mrnumber = {4512167},
     zbl = {07655820},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0172-20/}
}
TY  - JOUR
AU  - Soenjaya, Agus Leonardi
TI  - Global well-posedness for the Klein-Gordon-Schrödinger system with higher order coupling
JO  - Mathematica Bohemica
PY  - 2022
SP  - 461
EP  - 470
VL  - 147
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0172-20/
DO  - 10.21136/MB.2021.0172-20
LA  - en
ID  - 10_21136_MB_2021_0172_20
ER  - 
%0 Journal Article
%A Soenjaya, Agus Leonardi
%T Global well-posedness for the Klein-Gordon-Schrödinger system with higher order coupling
%J Mathematica Bohemica
%D 2022
%P 461-470
%V 147
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0172-20/
%R 10.21136/MB.2021.0172-20
%G en
%F 10_21136_MB_2021_0172_20
Soenjaya, Agus Leonardi. Global well-posedness for the Klein-Gordon-Schrödinger system with higher order coupling. Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 461-470. doi : 10.21136/MB.2021.0172-20. http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0172-20/

Cité par Sources :