Global well-posedness for the Klein-Gordon-Schrödinger system with higher order coupling
Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 461-470
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Global well-posedness for the Klein-Gordon-Schrödinger system with generalized higher order coupling, which is a system of PDEs in two variables arising from quantum physics, is proven. It is shown that the system is globally well-posed in $(u,n)\in L^2\times L^2$ under some conditions on the nonlinearity (the coupling term), by using the $L^2$ conservation law for $u$ and controlling the growth of $n$ via the estimates in the local theory. In particular, this extends the well-posedness results for such a system in Miao, Xu (2007) for some exponents to other dimensions and in lower regularity spaces.
DOI :
10.21136/MB.2021.0172-20
Classification :
35G55, 35Q40
Keywords: low regularity; global well-posedness; Klein-Gordon-Schrödinger equation; higher order coupling
Keywords: low regularity; global well-posedness; Klein-Gordon-Schrödinger equation; higher order coupling
@article{10_21136_MB_2021_0172_20,
author = {Soenjaya, Agus Leonardi},
title = {Global well-posedness for the {Klein-Gordon-Schr\"odinger} system with higher order coupling},
journal = {Mathematica Bohemica},
pages = {461--470},
publisher = {mathdoc},
volume = {147},
number = {4},
year = {2022},
doi = {10.21136/MB.2021.0172-20},
mrnumber = {4512167},
zbl = {07655820},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0172-20/}
}
TY - JOUR AU - Soenjaya, Agus Leonardi TI - Global well-posedness for the Klein-Gordon-Schrödinger system with higher order coupling JO - Mathematica Bohemica PY - 2022 SP - 461 EP - 470 VL - 147 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0172-20/ DO - 10.21136/MB.2021.0172-20 LA - en ID - 10_21136_MB_2021_0172_20 ER -
%0 Journal Article %A Soenjaya, Agus Leonardi %T Global well-posedness for the Klein-Gordon-Schrödinger system with higher order coupling %J Mathematica Bohemica %D 2022 %P 461-470 %V 147 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0172-20/ %R 10.21136/MB.2021.0172-20 %G en %F 10_21136_MB_2021_0172_20
Soenjaya, Agus Leonardi. Global well-posedness for the Klein-Gordon-Schrödinger system with higher order coupling. Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 461-470. doi: 10.21136/MB.2021.0172-20
Cité par Sources :