On $(n,m)$-$A$-normal and $(n,m)$-$A$-quasinormal semi-Hilbertian space operators
Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 169-186
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The purpose of the paper is to introduce and study a new class of operators on semi-Hilbertian spaces, i.e. spaces generated by positive semi-definite sesquilinear forms. Let ${\mathcal H}$ be a Hilbert space and let $A$ be a positive bounded operator on ${\mathcal H}$. The semi-inner product $\langle h\mid k\rangle _A:=\langle Ah\mid k\rangle $, $h,k \in {\mathcal H}$, induces a semi-norm $\|{\cdot }\|_A$. This makes ${\mathcal H}$ into a semi-Hilbertian space. An operator $T\in {\mathcal B}_A({\mathcal H})$ is said to be $(n,m)$-$A$-normal if $[T^n,(T^{\sharp _A})^m]:=T^n(T^{\sharp _A})^m-(T^{\sharp _A})^mT^n=0$ for some positive integers $n$ and $m$.
The purpose of the paper is to introduce and study a new class of operators on semi-Hilbertian spaces, i.e. spaces generated by positive semi-definite sesquilinear forms. Let ${\mathcal H}$ be a Hilbert space and let $A$ be a positive bounded operator on ${\mathcal H}$. The semi-inner product $\langle h\mid k\rangle _A:=\langle Ah\mid k\rangle $, $h,k \in {\mathcal H}$, induces a semi-norm $\|{\cdot }\|_A$. This makes ${\mathcal H}$ into a semi-Hilbertian space. An operator $T\in {\mathcal B}_A({\mathcal H})$ is said to be $(n,m)$-$A$-normal if $[T^n,(T^{\sharp _A})^m]:=T^n(T^{\sharp _A})^m-(T^{\sharp _A})^mT^n=0$ for some positive integers $n$ and $m$.
DOI : 10.21136/MB.2021.0167-19
Classification : 47B20, 47B50, 47B99, 54E40
Keywords: semi-Hilbertian space; $A$-normal operator; $(n, m)$-normal operator; $(n, m)$-quasinormal operator
@article{10_21136_MB_2021_0167_19,
     author = {Al Mohammady, Samir and Ould Beinane, Sid Ahmed and Ould Ahmed Mahmoud, Sid Ahmed},
     title = {On $(n,m)$-$A$-normal and $(n,m)$-$A$-quasinormal {semi-Hilbertian} space operators},
     journal = {Mathematica Bohemica},
     pages = {169--186},
     year = {2022},
     volume = {147},
     number = {2},
     doi = {10.21136/MB.2021.0167-19},
     mrnumber = {4407350},
     zbl = {07547248},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0167-19/}
}
TY  - JOUR
AU  - Al Mohammady, Samir
AU  - Ould Beinane, Sid Ahmed
AU  - Ould Ahmed Mahmoud, Sid Ahmed
TI  - On $(n,m)$-$A$-normal and $(n,m)$-$A$-quasinormal semi-Hilbertian space operators
JO  - Mathematica Bohemica
PY  - 2022
SP  - 169
EP  - 186
VL  - 147
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0167-19/
DO  - 10.21136/MB.2021.0167-19
LA  - en
ID  - 10_21136_MB_2021_0167_19
ER  - 
%0 Journal Article
%A Al Mohammady, Samir
%A Ould Beinane, Sid Ahmed
%A Ould Ahmed Mahmoud, Sid Ahmed
%T On $(n,m)$-$A$-normal and $(n,m)$-$A$-quasinormal semi-Hilbertian space operators
%J Mathematica Bohemica
%D 2022
%P 169-186
%V 147
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0167-19/
%R 10.21136/MB.2021.0167-19
%G en
%F 10_21136_MB_2021_0167_19
Al Mohammady, Samir; Ould Beinane, Sid Ahmed; Ould Ahmed Mahmoud, Sid Ahmed. On $(n,m)$-$A$-normal and $(n,m)$-$A$-quasinormal semi-Hilbertian space operators. Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 169-186. doi: 10.21136/MB.2021.0167-19

[1] Abood, E. H., Al-loz, M. A.: On some generalization of normal operators on Hilbert space. Iraqi J. Sci. 56 (2015), 1786-1794.

[2] Abood, E. H., Al-loz, M. A.: On some generalizations of $(n,m)$-normal powers operators on Hilbert space. J. Progressive Res. Math. (JPRM) 7 (2016), 1063-1070.

[3] Alzuraiqi, S. A., Patel, A. B.: On $n$-normal operators. Gen. Math. Notes 1 (2010), 61-73. | JFM

[4] Arias, M. L., Corach, G., Gonzalez, M. C.: Metric properties of projections in semi-Hilbertian spaces. Integral Equations Oper. Theory 62 (2008), 11-28. | DOI | MR | JFM

[5] Arias, M. L., Corach, G., Gonzalez, M. C.: Partial isometries in semi-Hilbertian spaces. Linear Algebra Appl. 428 (2008), 1460-1475. | DOI | MR | JFM

[6] Arias, M. L., Corach, G., Gonzalez, M. C.: Lifting properties in operator ranges. Acta Sci. Math. 75 (2009), 635-653. | MR | JFM

[7] Baklouti, H., Feki, K., Ahmed, O. A. M. Sid: Joint normality of operators in semi-Hilbertian spaces. Linear Multilinear Algebra 68 (2020), 845-866. | DOI | MR | JFM

[8] Bavithra, V.: $(n,m)$-power quasi normal operators in semi-Hilbertian spaces. J. Math. Informatics 11 (2017), 125-129. | DOI

[9] Benali, A., Ahmed, O. A. M. Sid: $(\alpha,\beta)$-$A$-normal operators in semi-Hilbertian spaces. Afr. Mat. 30 (2019), 903-920. | DOI | MR | JFM

[10] Chellali, C., Benali, A.: Class of $(A,n)$-power-hyponormal operators in semi-Hilbertian space. Func. Anal. Approx. Comput. 11 (2019), 13-21. | MR | JFM

[11] Chō, M., Lee, J. E., Tanahashic, K., Uchiyamad, A.: Remarks on $n$-normal operators. Filomat 32 (2018), 5441-5451. | DOI | MR

[12] Chō, M., Načevska, B.: Spectral properties of $n$-normal operators. Filomat 32 (2018), 5063-5069. | DOI | MR

[13] Douglas, R. G.: On majorization, factorization, and range inclusion of operators in Hilbert space. Proc. Am. Math. Soc. 17 (1966), 413-415. | DOI | MR | JFM

[14] Jah, S. H.: Class of $(A,n)$-power quasi-normal operators in semi-Hilbertian spaces. Int. J. Pure Appl. Math. 93 (2014), 61-83. | DOI | JFM

[15] Jibril, A. A. S.: On $n$-power normal operators. Arab. J. Sci. Eng., Sect. A, Sci. 33 (2008), 247-251. | MR | JFM

[16] Mary, J. S. I., Vijaylakshmi, P.: Fuglede-Putnam theorem and quasi-nilpotent part of $n$-normal operators. Tamkang J. Math. 46 (2015), (151-165). | DOI | MR | JFM

[17] Saddi, A.: $A$-normal operators in semi-Hilbertian spaces. Aust. J. Math. Anal. Appl. 9 (2012), Article ID 5, 12 pages. | MR | JFM

[18] Ahmed, O. A. M. Sid, Benali, A.: Hyponormal and $k$-quasi-hyponormal operators on semi-Hilbertian spaces. Aust. J. Math. Anal. Appl. 13 (2016), Article ID 7, 22 pages. | MR | JFM

[19] Ahmed, O. A. M. Sid, Ahmed, O. B. Sid: On the classes $(n,m)$-power $D$-normal and $(n,m)$-power $D$-quasi-normal operators. Oper. Matrices 13 (2019), 705-732. | DOI | MR | JFM

[20] Ahmed, O. B. Sid, Ahmed, O. A. M. Sid: On the class of $n$-power $D$-$m$-quasi-normal operatos on Hilbert spaces. Oper. Matrices 14 (2020), 159-174. | DOI | MR | JFM

[21] Suciu, L.: Orthogonal decompositions induced by generalized contractions. Acta Sci. Math. 70 (2004), 751-765. | MR | JFM

Cité par Sources :