On $(n,m)$-$A$-normal and $(n,m)$-$A$-quasinormal semi-Hilbertian space operators
Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 169-186.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The purpose of the paper is to introduce and study a new class of operators on semi-Hilbertian spaces, i.e. spaces generated by positive semi-definite sesquilinear forms. Let ${\mathcal H}$ be a Hilbert space and let $A$ be a positive bounded operator on ${\mathcal H}$. The semi-inner product $\langle h\mid k\rangle _A:=\langle Ah\mid k\rangle $, $h,k \in {\mathcal H}$, induces a semi-norm $\|{\cdot }\|_A$. This makes ${\mathcal H}$ into a semi-Hilbertian space. An operator $T\in {\mathcal B}_A({\mathcal H})$ is said to be $(n,m)$-$A$-normal if $[T^n,(T^{\sharp _A})^m]:=T^n(T^{\sharp _A})^m-(T^{\sharp _A})^mT^n=0$ for some positive integers $n$ and $m$.
DOI : 10.21136/MB.2021.0167-19
Classification : 47B20, 47B50, 47B99, 54E40
Keywords: semi-Hilbertian space; $A$-normal operator; $(n, m)$-normal operator; $(n, m)$-quasinormal operator
@article{10_21136_MB_2021_0167_19,
     author = {Al Mohammady, Samir and Ould Beinane, Sid Ahmed and Ould Ahmed Mahmoud, Sid Ahmed},
     title = {On $(n,m)$-$A$-normal and $(n,m)$-$A$-quasinormal {semi-Hilbertian} space operators},
     journal = {Mathematica Bohemica},
     pages = {169--186},
     publisher = {mathdoc},
     volume = {147},
     number = {2},
     year = {2022},
     doi = {10.21136/MB.2021.0167-19},
     mrnumber = {4407350},
     zbl = {07547248},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0167-19/}
}
TY  - JOUR
AU  - Al Mohammady, Samir
AU  - Ould Beinane, Sid Ahmed
AU  - Ould Ahmed Mahmoud, Sid Ahmed
TI  - On $(n,m)$-$A$-normal and $(n,m)$-$A$-quasinormal semi-Hilbertian space operators
JO  - Mathematica Bohemica
PY  - 2022
SP  - 169
EP  - 186
VL  - 147
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0167-19/
DO  - 10.21136/MB.2021.0167-19
LA  - en
ID  - 10_21136_MB_2021_0167_19
ER  - 
%0 Journal Article
%A Al Mohammady, Samir
%A Ould Beinane, Sid Ahmed
%A Ould Ahmed Mahmoud, Sid Ahmed
%T On $(n,m)$-$A$-normal and $(n,m)$-$A$-quasinormal semi-Hilbertian space operators
%J Mathematica Bohemica
%D 2022
%P 169-186
%V 147
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0167-19/
%R 10.21136/MB.2021.0167-19
%G en
%F 10_21136_MB_2021_0167_19
Al Mohammady, Samir; Ould Beinane, Sid Ahmed; Ould Ahmed Mahmoud, Sid Ahmed. On $(n,m)$-$A$-normal and $(n,m)$-$A$-quasinormal semi-Hilbertian space operators. Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 169-186. doi : 10.21136/MB.2021.0167-19. http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0167-19/

Cité par Sources :