Remarks on monotonically star compact spaces
Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 319-323
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A space $ X $ is said to be monotonically star compact if one assigns to each open cover $ \mathcal {U} $ a subspace $ s(\mathcal {U}) \subseteq X $, called a kernel, such that $ s(\mathcal {U}) $ is a compact subset of $ X $ and $ {\rm St}(s(\mathcal {U}),\mathcal {U})=X $, and if $ \mathcal {V} $ refines $ \mathcal {U} $ then $ s(\mathcal {U}) \subseteq s(\mathcal {V}) $, where $ {\rm St}(s(\mathcal {U}),\mathcal {U})= \bigcup \{U \in \nobreak \mathcal {U}\colon U \cap s(\mathcal {U}) \not = \emptyset \} $. We prove the following statements: \item {(1)} The inverse image of a monotonically star compact space under the open perfect map is monotonically star compact. \item {(2)} The product of a monotonically star compact space and a compact space is monotonically star compact. \item {(3)} If $ X $ is monotonically star compact space with $ e(X) \omega $, then $ A(X) $ is monotonically star compact, where $ A(X) $ is the Alexandorff duplicate of space $X$. \endgraf The above statement (2) gives an answer to the question of Song (2015).
DOI :
10.21136/MB.2021.0158-20
Classification :
54D20, 54D30, 54D40
Keywords: monotonically star compact; regular closed; perfect; star-compact; covering; star-covering; topological space
Keywords: monotonically star compact; regular closed; perfect; star-compact; covering; star-covering; topological space
@article{10_21136_MB_2021_0158_20,
author = {Singh, Sumit},
title = {Remarks on monotonically star compact spaces},
journal = {Mathematica Bohemica},
pages = {319--323},
publisher = {mathdoc},
volume = {147},
number = {3},
year = {2022},
doi = {10.21136/MB.2021.0158-20},
mrnumber = {4482308},
zbl = {07584127},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0158-20/}
}
TY - JOUR AU - Singh, Sumit TI - Remarks on monotonically star compact spaces JO - Mathematica Bohemica PY - 2022 SP - 319 EP - 323 VL - 147 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0158-20/ DO - 10.21136/MB.2021.0158-20 LA - en ID - 10_21136_MB_2021_0158_20 ER -
Singh, Sumit. Remarks on monotonically star compact spaces. Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 319-323. doi: 10.21136/MB.2021.0158-20
Cité par Sources :