Remarks on monotonically star compact spaces
Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 319-323
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A space $ X $ is said to be monotonically star compact if one assigns to each open cover $ \mathcal {U} $ a subspace $ s(\mathcal {U}) \subseteq X $, called a kernel, such that $ s(\mathcal {U}) $ is a compact subset of $ X $ and $ {\rm St}(s(\mathcal {U}),\mathcal {U})=X $, and if $ \mathcal {V} $ refines $ \mathcal {U} $ then $ s(\mathcal {U}) \subseteq s(\mathcal {V}) $, where $ {\rm St}(s(\mathcal {U}),\mathcal {U})= \bigcup \{U \in \nobreak \mathcal {U}\colon U \cap s(\mathcal {U}) \not = \emptyset \} $. We prove the following statements: \item {(1)} The inverse image of a monotonically star compact space under the open perfect map is monotonically star compact. \item {(2)} The product of a monotonically star compact space and a compact space is monotonically star compact. \item {(3)} If $ X $ is monotonically star compact space with $ e(X) \omega $, then $ A(X) $ is monotonically star compact, where $ A(X) $ is the Alexandorff duplicate of space $X$. \endgraf The above statement (2) gives an answer to the question of Song (2015).
A space $ X $ is said to be monotonically star compact if one assigns to each open cover $ \mathcal {U} $ a subspace $ s(\mathcal {U}) \subseteq X $, called a kernel, such that $ s(\mathcal {U}) $ is a compact subset of $ X $ and $ {\rm St}(s(\mathcal {U}),\mathcal {U})=X $, and if $ \mathcal {V} $ refines $ \mathcal {U} $ then $ s(\mathcal {U}) \subseteq s(\mathcal {V}) $, where $ {\rm St}(s(\mathcal {U}),\mathcal {U})= \bigcup \{U \in \nobreak \mathcal {U}\colon U \cap s(\mathcal {U}) \not = \emptyset \} $. We prove the following statements: \item {(1)} The inverse image of a monotonically star compact space under the open perfect map is monotonically star compact. \item {(2)} The product of a monotonically star compact space and a compact space is monotonically star compact. \item {(3)} If $ X $ is monotonically star compact space with $ e(X) \omega $, then $ A(X) $ is monotonically star compact, where $ A(X) $ is the Alexandorff duplicate of space $X$. \endgraf The above statement (2) gives an answer to the question of Song (2015).
DOI : 10.21136/MB.2021.0158-20
Classification : 54D20, 54D30, 54D40
Keywords: monotonically star compact; regular closed; perfect; star-compact; covering; star-covering; topological space
@article{10_21136_MB_2021_0158_20,
     author = {Singh, Sumit},
     title = {Remarks on monotonically star compact spaces},
     journal = {Mathematica Bohemica},
     pages = {319--323},
     year = {2022},
     volume = {147},
     number = {3},
     doi = {10.21136/MB.2021.0158-20},
     mrnumber = {4482308},
     zbl = {07584127},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0158-20/}
}
TY  - JOUR
AU  - Singh, Sumit
TI  - Remarks on monotonically star compact spaces
JO  - Mathematica Bohemica
PY  - 2022
SP  - 319
EP  - 323
VL  - 147
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0158-20/
DO  - 10.21136/MB.2021.0158-20
LA  - en
ID  - 10_21136_MB_2021_0158_20
ER  - 
%0 Journal Article
%A Singh, Sumit
%T Remarks on monotonically star compact spaces
%J Mathematica Bohemica
%D 2022
%P 319-323
%V 147
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0158-20/
%R 10.21136/MB.2021.0158-20
%G en
%F 10_21136_MB_2021_0158_20
Singh, Sumit. Remarks on monotonically star compact spaces. Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 319-323. doi: 10.21136/MB.2021.0158-20

[1] Aiken, L. P.: Star-covering properties: generalized $ \psi $-spaces, countability conditions, reflection. Topology Appl. 158 (2011), 1732-1737 \99999DOI99999 10.1016/j.topol.2011.06.032 . | DOI | MR | JFM

[2] Alas, O. T., Junqueira, L. R., Mill, J. van, Tkachuk, V. V., Wilson, R. G.: On extent of star countable spaces. Cent. Eur. J. Math. 9 (2011), 603-615 \99999DOI99999 10.2478/s11533-011-0018-y . | MR | JFM

[3] Alas, O. T., Junqueira, L. R., Wilson, R. G.: Countability and star covering properties. Topology Appl. 158 (2011), 620-626 \99999DOI99999 10.1016/j.topol.2010.12.012 . | MR | JFM

[4] Cao, J., Song, Y.: Aquaro number absolute star-Lindelöf number. Houston J. Math. 29 (2003), 925-936 \99999MR99999 2045661 . | MR | JFM

[5] Engelking, R.: General Topology. Mathematics Library 60. PWN-Polish Scientific Publishers, Warsaw (1977),\99999MR99999 0500780 . | MR | JFM

[6] Matveev, M. V.: A Survey on Star Covering Properties. Topology Atlas Preprint \#330. York University, Toronto (1998), Available at http://at.yorku.ca/v/a/a/a/19.htm\kern0pt

[7] Douwen, E. K. van, Reed, G. K., Roscoe, A. W., Tree, I. J.: Star covering properties. Topology Appl. 39 (1991), 71-103. | DOI | MR | JFM

[8] Mill, J. van, Tkachuk, V. V., Wilson, R. G.: Classes defined by stars and neighbourhood assignments. Topology Appl. 154 (2007), 2127-2134. | DOI | MR | JFM

[9] Popvassilev, S. G., Porter, J. E.: Monotone properties defined from stars of open coverings. Topology Appl. 169 (2014), 87-98 \99999DOI99999 10.1016/j.topol.2014.02.034 . | MR | JFM

[10] Song, Y. -K.: Monotonically star compact spaces. Topology Appl. 190 (2015), 35-41 \99999DOI99999 10.1016/j.topol.2015.04.016 . | MR | JFM

[11] Xuan, W. -F., Shi, W. -X.: Notes on star Lindelöf spaces. Topology Appl. 204 (2016), 63-69. | DOI | MR | JFM

Cité par Sources :