On the Nehari manifold for a logarithmic fractional Schrödinger equation with possibly vanishing potentials
Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 33-49
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study a class of logarithmic fractional Schrödinger equations with possibly vanishing potentials. By using the fibrering maps and the Nehari manifold we obtain the existence of at least one nontrivial solution.
We study a class of logarithmic fractional Schrödinger equations with possibly vanishing potentials. By using the fibrering maps and the Nehari manifold we obtain the existence of at least one nontrivial solution.
DOI : 10.21136/MB.2021.0143-19
Classification : 35J60, 47J30
Keywords: Nehari manifold; fibrering maps; vanishing potential; logarithmic nonlinearity
@article{10_21136_MB_2021_0143_19,
     author = {Le, Cong Nhan and Le, Xuan Truong},
     title = {On the {Nehari} manifold for a logarithmic fractional {Schr\"odinger} equation with possibly vanishing potentials},
     journal = {Mathematica Bohemica},
     pages = {33--49},
     year = {2022},
     volume = {147},
     number = {1},
     doi = {10.21136/MB.2021.0143-19},
     mrnumber = {4387467},
     zbl = {07547240},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0143-19/}
}
TY  - JOUR
AU  - Le, Cong Nhan
AU  - Le, Xuan Truong
TI  - On the Nehari manifold for a logarithmic fractional Schrödinger equation with possibly vanishing potentials
JO  - Mathematica Bohemica
PY  - 2022
SP  - 33
EP  - 49
VL  - 147
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0143-19/
DO  - 10.21136/MB.2021.0143-19
LA  - en
ID  - 10_21136_MB_2021_0143_19
ER  - 
%0 Journal Article
%A Le, Cong Nhan
%A Le, Xuan Truong
%T On the Nehari manifold for a logarithmic fractional Schrödinger equation with possibly vanishing potentials
%J Mathematica Bohemica
%D 2022
%P 33-49
%V 147
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0143-19/
%R 10.21136/MB.2021.0143-19
%G en
%F 10_21136_MB_2021_0143_19
Le, Cong Nhan; Le, Xuan Truong. On the Nehari manifold for a logarithmic fractional Schrödinger equation with possibly vanishing potentials. Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 33-49. doi: 10.21136/MB.2021.0143-19

[1] Alves, C. O., Souto, M. A. S.: Existence of solutions for a class of elliptic equations in $\mathbb R^N$ with vanishing potentials. J. Differ. Equations 252 (2012), 5555-5568 \99999DOI99999 10.1016/j.jde.2012.01.025 . | DOI | MR | JFM

[2] Alves, C. O., Souto, M. A. S.: Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity. J. Differ. Equations 254 (2013), 1977-1991 \99999DOI99999 10.1016/j.jde.2012.11.013 . | MR | JFM

[3] Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge Studies in Advanced Mathematics 104. Cambridge University Press, Cambridge (2007). | DOI | MR | JFM

[4] Ambrosetti, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with vanishing and decaying potentials. Differ. Integral Equ. 18 (2005), 1321-1332 \99999MR99999 2174974 . | MR | JFM

[5] Ardila, A. H.: Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity. Nonlinear Anal., Theory Methods Appl. 155 (2017), 52-64 \99999DOI99999 10.1016/j.na.2017.01.006 . | MR | JFM

[6] Benci, V., Grisanti, C. R., Micheletti, A. M.: Existence of solutions for the nonlinear Schrödinger equation with $V(\infty)=0$. Contributions to Nonlinear Analysis Progress in Nonlinear Differential Equations and Their Applications 66. Birkhäuser, Basel (2006), 53-65 \99999DOI99999 10.1007/3-7643-7401-2_4 . | MR | JFM

[7] Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I: Existence of a ground state. Arch. Ration. Mech. Anal. 82 (1983), 313-345 \99999DOI99999 10.1007/BF00250555 . | MR | JFM

[8] Bia{ł}ynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100 (1976), 62-93 \99999DOI99999 10.1016/0003-4916(76)90057-9 . | MR

[9] Brown, K. J., Zhang, Y.: The Nehari manifold for a semilinear elliptic problem with a sign-changing weight function. J. Differ. Equations 193 (2003), 481-499 \99999DOI99999 10.1016/S0022-0396(03)00121-9 . | MR | JFM

[10] Caffarelli, L.: Non-local diffusions, drifts and games. Nonlinear Partial Differential Equations: The Abel symposium 2010 Abel Symposia 7. Springer, Berlin (2012), 37-52 \99999DOI99999 10.1007/978-3-642-25361-4_3 . | MR | JFM

[11] Campa, I., Degiovanni, M.: Subdifferential calculus and nonsmooth critical point theory. SIAM J. Optim. 10 (2000), 1020-1048 \99999DOI99999 10.1137/S1052623499353169 . | MR | JFM

[12] Cazenave, T.: Stable solutions of the logarithmic Schrödinger equation. Nonlinear Anal., Theory Methods Appl. 7 (1983), 1127-1140. | DOI | MR | JFM

[13] Cazenave, T., Haraux, A.: Équations d'évolution avec non linéarité logarithmique. Ann. Fac. Sci. Toulouse, Math. (5) 2 (1980), 21-51 French \99999DOI99999 10.5802/afst.543 . | MR | JFM

[14] Chang, X.: Ground state solutions of asymptotically linear fractional Schrödinger equations. J. Math. Phys. 54 (2013), Article ID 061504, 10 pages \99999DOI99999 10.1063/1.4809933 . | MR | JFM

[15] Chen, W., Deng, S.: The Nehari manifold for nonlocal elliptic operators involving concave-convex nonlinearities. Z. Angew. Math. Phys. 66 (2015), 1387-1400. | DOI | MR | JFM

[16] Cheng, M.: Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys. 53 (2012), Article ID 043507, 7 pages \99999DOI99999 10.1063/1.3701574 . | MR | JFM

[17] Corvellec, J.-N., Degiovanni, M., Marzocchi, M.: Deformation properties for continuous functionals and critical point theory. Topol. Methods Nonlinear Anal. 1 (1993), 151-171 \99999DOI99999 10.12775/TMNA.1993.012 . | MR | JFM

[18] D'Avenia, P., Montefusco, E., Squassina, M.: On the logarithmic Schrödinger equation. Commun. Contemp. Math. 16 (2014), Article ID 1350032, 15 pages \99999DOI99999 10.1142/S0219199713500326 . | MR | JFM

[19] Degiovanni, M., Zani, S.: Multiple solutions of semilinear elliptic equations with one-sided growth conditions. Math. Comput. Modelling 32 (2000), 1377-1393. | DOI | MR | JFM

[20] Nezza, E. Di, Palatucci, G., Valdinoci, E.: Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), 521-573 \99999DOI99999 10.1016/j.bulsci.2011.12.004 . | MR | JFM

[21] Drábek, P., Pohozaev, S. I.: Positive solutions for the $p$-Laplacian: Application of the fibrering method. Proc. R. Soc. Edinb., Sect. A 127 (1997), 703-726 \99999DOI99999 10.1017/S0308210500023787 . | MR | JFM

[22] Furtado, M. F., Maia, L. A., Medeiros, E. S.: Positive and nodal solutions for a nonlinear Schrödinger equation with indefinite potential. Adv. Nonlinear Stud. 8 (2008), 353-373 \99999DOI99999 10.1515/ans-2008-0207 . | MR | JFM

[23] Hefter, E. F.: Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics. Phys. Rev. 32(A) (1985), 1201-1204 \99999DOI99999 10.1103/PhysRevA.32.1201 .

[24] Ji, C., Szulkin, A.: A logarithmic Schrödinger equation with asymptotic conditions on the potential. J. Math. Anal. Appl. 437 (2016), 241-254. | DOI | MR | JFM

[25] Khoutir, S., Chen, H.: Existence of infinitely many high energy solutions for a fractional Schrödinger equation in $\mathbb R^N$. Appl. Math. Lett. 61 (2016), 156-162 \99999DOI99999 10.1016/j.aml.2016.06.001 . | MR | JFM

[26] Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett., A 268 (2000), 298-305 \99999DOI99999 10.1016/S0375-9601(00)00201-2 . | MR | JFM

[27] Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E (3) 66 (2002), Article ID 056108, 7 pages \99999DOI99999 10.1103/PhysRevE.66.056108 . | MR

[28] Perera, K., Squassina, M., Yang, Y.: Critical fractional $p$-Laplacian problems with possibly vanishing potentials. J. Math. Anal. Appl. 433 (2016), 818-831 \99999DOI99999 10.1016/j.jmaa.2015.08.024 . | MR | JFM

[29] Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbb R^N$. J. Math. Phys. 54 (2013), Article ID 031501, 17 pages \99999DOI99999 10.1063/1.4793990 . | MR | JFM

[30] Shang, X., Zhang, J.: Ground states for fractional Schrödinger equations with critical growth. Nonlinearity 27 (2014), 187-207 \99999DOI99999 10.1088/0951-7715/27/2/187 . | MR | JFM

[31] Shang, X., Zhang, J., Yang, Y.: On fractional Schrödinger equation in $\mathbb R^N$ with critical growth. J. Math. Phys. 54 (2013), Article ID 121502, 20 pages. | DOI | MR | JFM

[32] Squassina, M., Szulkin, A.: Multiple solutions to logarithmic Schrödinger equations with periodic potential. Calc. Var. Partial Differ. Equ. 54 (2015), 585-597. | DOI | MR | JFM

[33] Szulkin, A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986), 77-109 \99999DOI99999 10.1016/S0294-1449(16)30389-4 . | MR | JFM

[34] Teng, K.: Multiple solutions for a class of fractional Schrödinger equations in $\mathbb R^N$. Nonlinear Anal., Real World Appl. 21 (2015), 76-86 \99999DOI99999 10.1016/j.nonrwa.2014.06.008 . | MR | JFM

[35] Ledesma, C. E. Torres: Existence and symmetry result for fractional $p$-Laplacian in $\Bbb{R}^n$. Commun. Pure Appl. Anal. (2017), 16 99-113. | DOI | MR | JFM

[36] Zloshchastiev, K. G.: Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences. Grav. Cosmol. 16 (2010), 288-297. | DOI | MR | JFM

Cité par Sources :