Keywords: frame; atomic subspace; $g$-fusion frame; $K$-$g$-fusion frame
@article{10_21136_MB_2021_0130_20,
author = {Ghosh, Prasenjit and Samanta, Tapas Kumar},
title = {Generalized atomic subspaces for operators in {Hilbert} spaces},
journal = {Mathematica Bohemica},
pages = {325--345},
year = {2022},
volume = {147},
number = {3},
doi = {10.21136/MB.2021.0130-20},
mrnumber = {4482309},
zbl = {07584128},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0130-20/}
}
TY - JOUR AU - Ghosh, Prasenjit AU - Samanta, Tapas Kumar TI - Generalized atomic subspaces for operators in Hilbert spaces JO - Mathematica Bohemica PY - 2022 SP - 325 EP - 345 VL - 147 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0130-20/ DO - 10.21136/MB.2021.0130-20 LA - en ID - 10_21136_MB_2021_0130_20 ER -
%0 Journal Article %A Ghosh, Prasenjit %A Samanta, Tapas Kumar %T Generalized atomic subspaces for operators in Hilbert spaces %J Mathematica Bohemica %D 2022 %P 325-345 %V 147 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0130-20/ %R 10.21136/MB.2021.0130-20 %G en %F 10_21136_MB_2021_0130_20
Ghosh, Prasenjit; Samanta, Tapas Kumar. Generalized atomic subspaces for operators in Hilbert spaces. Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 325-345. doi: 10.21136/MB.2021.0130-20
[1] Ahmadi, R., Rahimlou, G., Sadri, V., Farfar, R. Zarghami: Constructions of $K$-g-fusion frames and their duals in Hilbert spaces. Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 13 (2020), 17-32. | MR
[2] Bhandari, A., Mukherjee, S.: Atomic subspaces for operators. Indian J. Pure Appl. Math. 51 (2020), 1039-1052. | DOI | MR | JFM
[3] Casazza, P. G., Kutyniok, G.: Frames of subspaces. Wavelets, Frames and Operator Theory Contemporary Mathematics 345. American Mathematical Society, Providence (2004), 87-114. | DOI | MR | JFM
[4] Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser, Basel (2016). | DOI | MR | JFM
[5] Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27 (1986), 1271-1283. | DOI | MR | JFM
[6] Douglas, R. G.: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc. 17 (1966), 413-415. | DOI | MR | JFM
[7] Duffin, R. J., Schaeffer, A. C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72 (1952), 341-366. | DOI | MR | JFM
[8] Găvruţa, L.: Frames for operators. Appl. Comput. Harmon. Anal. 32 (2012), 139-144. | DOI | MR | JFM
[9] Găvruţa, L.: Atomic decompositions for operators in reproducing kernel Hilbert spaces. Math. Rep., Buchar. 17 (2015), 303-314. | MR | JFM
[10] Găvruţa, P.: On the duality of fusion frames. J. Math. Anal. Appl. 333 (2007), 871-879. | DOI | MR | JFM
[11] Ghosh, P., Samanta, T. K.: Stability of dual $g$-fusion frames in Hilbert spaces. Methods Funct. Anal. Topology 26 (2020), 227-240. | DOI | MR
[12] Hua, D., Huang, Y.: $K$-g-frames and stability of $K$-g-frames in Hilbert spaces. J. Korean Math. Soc. 53 (2016), 1331-1345. | DOI | MR | JFM
[13] Pawan, K. J., Om, P. A.: Functional Analysis. New Age International Publisher, New Delhi (1995).
[14] Sadri, V., Rahimlou, G., Ahmadi, R., Zarghami, R.: Generalized fusion frames in Hilbert spaces. Available at , 16 pages. | arXiv
[15] Sun, W.: $g$-frames and $g$-Riesz bases. J. Math. Anal. Appl. 322 (2006), 437-452. | DOI | MR | JFM
Cité par Sources :