Generalized atomic subspaces for operators in Hilbert spaces
Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 325-345
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce the notion of a $g$-atomic subspace for a bounded linear operator and construct several useful resolutions of the identity operator on a Hilbert space using the theory of $g$-fusion frames. Also, we shall describe the concept of frame operator for a pair of $g$-fusion Bessel sequences and some of their properties.
We introduce the notion of a $g$-atomic subspace for a bounded linear operator and construct several useful resolutions of the identity operator on a Hilbert space using the theory of $g$-fusion frames. Also, we shall describe the concept of frame operator for a pair of $g$-fusion Bessel sequences and some of their properties.
DOI : 10.21136/MB.2021.0130-20
Classification : 42C15, 46C07
Keywords: frame; atomic subspace; $g$-fusion frame; $K$-$g$-fusion frame
@article{10_21136_MB_2021_0130_20,
     author = {Ghosh, Prasenjit and Samanta, Tapas Kumar},
     title = {Generalized atomic subspaces for operators in {Hilbert} spaces},
     journal = {Mathematica Bohemica},
     pages = {325--345},
     year = {2022},
     volume = {147},
     number = {3},
     doi = {10.21136/MB.2021.0130-20},
     mrnumber = {4482309},
     zbl = {07584128},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0130-20/}
}
TY  - JOUR
AU  - Ghosh, Prasenjit
AU  - Samanta, Tapas Kumar
TI  - Generalized atomic subspaces for operators in Hilbert spaces
JO  - Mathematica Bohemica
PY  - 2022
SP  - 325
EP  - 345
VL  - 147
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0130-20/
DO  - 10.21136/MB.2021.0130-20
LA  - en
ID  - 10_21136_MB_2021_0130_20
ER  - 
%0 Journal Article
%A Ghosh, Prasenjit
%A Samanta, Tapas Kumar
%T Generalized atomic subspaces for operators in Hilbert spaces
%J Mathematica Bohemica
%D 2022
%P 325-345
%V 147
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0130-20/
%R 10.21136/MB.2021.0130-20
%G en
%F 10_21136_MB_2021_0130_20
Ghosh, Prasenjit; Samanta, Tapas Kumar. Generalized atomic subspaces for operators in Hilbert spaces. Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 325-345. doi: 10.21136/MB.2021.0130-20

[1] Ahmadi, R., Rahimlou, G., Sadri, V., Farfar, R. Zarghami: Constructions of $K$-g-fusion frames and their duals in Hilbert spaces. Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 13 (2020), 17-32. | MR

[2] Bhandari, A., Mukherjee, S.: Atomic subspaces for operators. Indian J. Pure Appl. Math. 51 (2020), 1039-1052. | DOI | MR | JFM

[3] Casazza, P. G., Kutyniok, G.: Frames of subspaces. Wavelets, Frames and Operator Theory Contemporary Mathematics 345. American Mathematical Society, Providence (2004), 87-114. | DOI | MR | JFM

[4] Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser, Basel (2016). | DOI | MR | JFM

[5] Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27 (1986), 1271-1283. | DOI | MR | JFM

[6] Douglas, R. G.: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc. 17 (1966), 413-415. | DOI | MR | JFM

[7] Duffin, R. J., Schaeffer, A. C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72 (1952), 341-366. | DOI | MR | JFM

[8] Găvruţa, L.: Frames for operators. Appl. Comput. Harmon. Anal. 32 (2012), 139-144. | DOI | MR | JFM

[9] Găvruţa, L.: Atomic decompositions for operators in reproducing kernel Hilbert spaces. Math. Rep., Buchar. 17 (2015), 303-314. | MR | JFM

[10] Găvruţa, P.: On the duality of fusion frames. J. Math. Anal. Appl. 333 (2007), 871-879. | DOI | MR | JFM

[11] Ghosh, P., Samanta, T. K.: Stability of dual $g$-fusion frames in Hilbert spaces. Methods Funct. Anal. Topology 26 (2020), 227-240. | DOI | MR

[12] Hua, D., Huang, Y.: $K$-g-frames and stability of $K$-g-frames in Hilbert spaces. J. Korean Math. Soc. 53 (2016), 1331-1345. | DOI | MR | JFM

[13] Pawan, K. J., Om, P. A.: Functional Analysis. New Age International Publisher, New Delhi (1995).

[14] Sadri, V., Rahimlou, G., Ahmadi, R., Zarghami, R.: Generalized fusion frames in Hilbert spaces. Available at , 16 pages. | arXiv

[15] Sun, W.: $g$-frames and $g$-Riesz bases. J. Math. Anal. Appl. 322 (2006), 437-452. | DOI | MR | JFM

Cité par Sources :