Generalized atomic subspaces for operators in Hilbert spaces
Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 325-345.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We introduce the notion of a $g$-atomic subspace for a bounded linear operator and construct several useful resolutions of the identity operator on a Hilbert space using the theory of $g$-fusion frames. Also, we shall describe the concept of frame operator for a pair of $g$-fusion Bessel sequences and some of their properties.
DOI : 10.21136/MB.2021.0130-20
Classification : 42C15, 46C07
Keywords: frame; atomic subspace; $g$-fusion frame; $K$-$g$-fusion frame
@article{10_21136_MB_2021_0130_20,
     author = {Ghosh, Prasenjit and Samanta, Tapas Kumar},
     title = {Generalized atomic subspaces for operators in {Hilbert} spaces},
     journal = {Mathematica Bohemica},
     pages = {325--345},
     publisher = {mathdoc},
     volume = {147},
     number = {3},
     year = {2022},
     doi = {10.21136/MB.2021.0130-20},
     mrnumber = {4482309},
     zbl = {07584128},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0130-20/}
}
TY  - JOUR
AU  - Ghosh, Prasenjit
AU  - Samanta, Tapas Kumar
TI  - Generalized atomic subspaces for operators in Hilbert spaces
JO  - Mathematica Bohemica
PY  - 2022
SP  - 325
EP  - 345
VL  - 147
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0130-20/
DO  - 10.21136/MB.2021.0130-20
LA  - en
ID  - 10_21136_MB_2021_0130_20
ER  - 
%0 Journal Article
%A Ghosh, Prasenjit
%A Samanta, Tapas Kumar
%T Generalized atomic subspaces for operators in Hilbert spaces
%J Mathematica Bohemica
%D 2022
%P 325-345
%V 147
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0130-20/
%R 10.21136/MB.2021.0130-20
%G en
%F 10_21136_MB_2021_0130_20
Ghosh, Prasenjit; Samanta, Tapas Kumar. Generalized atomic subspaces for operators in Hilbert spaces. Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 325-345. doi : 10.21136/MB.2021.0130-20. http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0130-20/

Cité par Sources :