Global existence and stability of solution for a nonlinear Kirchhoff type reaction-diffusion equation with variable exponents
Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 471-484
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider a class of Kirchhoff type reaction-diffusion equations with variable exponents and source terms \begin {equation*} u_{t}-M\biggl (\int _\Omega \vert \nabla u \vert ^{2} {\rm d}x\bigg ) \Delta u+ \vert u \vert ^{m(x) -2}u_{t}= \vert u \vert ^{r(x) -2}u. \end {equation*} We prove with suitable assumptions on the variable exponents $r( {\cdot }),$ $m({\cdot })$ the global existence of the solution and a stability result using potential and Nihari's functionals with small positive initial energy, the stability being based on Komornik's inequality.
We consider a class of Kirchhoff type reaction-diffusion equations with variable exponents and source terms \begin {equation*} u_{t}-M\biggl (\int _\Omega \vert \nabla u \vert ^{2} {\rm d}x\bigg ) \Delta u+ \vert u \vert ^{m(x) -2}u_{t}= \vert u \vert ^{r(x) -2}u. \end {equation*} We prove with suitable assumptions on the variable exponents $r( {\cdot }),$ $m({\cdot })$ the global existence of the solution and a stability result using potential and Nihari's functionals with small positive initial energy, the stability being based on Komornik's inequality.
DOI : 10.21136/MB.2021.0122-20
Classification : 35B40, 35L10, 35L70
Keywords: Kirchhoff equation; reaction-diffusion equation; variable exponent; global solution
@article{10_21136_MB_2021_0122_20,
     author = {Khaldi, Aya and Ouaoua, Amar and Maouni, Messaoud},
     title = {Global existence and stability of solution for a nonlinear {Kirchhoff} type reaction-diffusion equation with variable exponents},
     journal = {Mathematica Bohemica},
     pages = {471--484},
     year = {2022},
     volume = {147},
     number = {4},
     doi = {10.21136/MB.2021.0122-20},
     mrnumber = {4512168},
     zbl = {07655821},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0122-20/}
}
TY  - JOUR
AU  - Khaldi, Aya
AU  - Ouaoua, Amar
AU  - Maouni, Messaoud
TI  - Global existence and stability of solution for a nonlinear Kirchhoff type reaction-diffusion equation with variable exponents
JO  - Mathematica Bohemica
PY  - 2022
SP  - 471
EP  - 484
VL  - 147
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0122-20/
DO  - 10.21136/MB.2021.0122-20
LA  - en
ID  - 10_21136_MB_2021_0122_20
ER  - 
%0 Journal Article
%A Khaldi, Aya
%A Ouaoua, Amar
%A Maouni, Messaoud
%T Global existence and stability of solution for a nonlinear Kirchhoff type reaction-diffusion equation with variable exponents
%J Mathematica Bohemica
%D 2022
%P 471-484
%V 147
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0122-20/
%R 10.21136/MB.2021.0122-20
%G en
%F 10_21136_MB_2021_0122_20
Khaldi, Aya; Ouaoua, Amar; Maouni, Messaoud. Global existence and stability of solution for a nonlinear Kirchhoff type reaction-diffusion equation with variable exponents. Mathematica Bohemica, Tome 147 (2022) no. 4, pp. 471-484. doi: 10.21136/MB.2021.0122-20

[1] Antontsev, S., Shmarev, S.: Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up. Atlantis Studies in Differential Equations 4. Springer, Berlin (2015). | DOI | MR | JFM

[2] Benaissa, A., Messaoudi, S. A.: Blow-up of solutions for Kirchhoff equation of $q$-Laplacian type with nonlinear dissipation. Colloq. Math. 94 (2002), 103-109. | DOI | MR | JFM

[3] Chen, H., Liu, G.: Global existence, uniform decay and exponential growth for a class of semi-linear wave equations with strong damping. Acta Math. Sci., Ser. B, Engl. Ed. 33 (2013), 41-58. | DOI | MR | JFM

[4] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011). | DOI | MR | JFM

[5] Fu, Y., Xiang, M.: Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent. Appl. Anal. 95 (2016), 524-544. | DOI | MR | JFM

[6] Gao, Q., Li, F., Wang, Y.: Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipation. Cent. Eur. J. Math. 9 (2011), 686-698. | DOI | MR | JFM

[7] Ghegal, S., Hamchi, I., Messaoudi, S. A.: Global existence and stability of a nonlinear wave equation with variable-exponent nonlinearities. Appl. Anal. 99 (2020), 1333-1343. | DOI | MR | JFM

[8] Ghisi, M., Gobbino, M.: Hyperbolic-parabolic singular perturbation for middly degenerate Kirchhoff equations: Time-decay estimates. J. Differ. Equations 245 (2008), 2979-3007. | DOI | MR | JFM

[9] Han, Y., Li, Q.: Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy. Comput. Math. Appl. 75 (2018), 3283-3297. | DOI | MR | JFM

[10] Jiang, Z., Zheng, S., Song, X.: Blow-up analysis for a nonlinear diffusion equation with nonlinear boundary conditions. Appl. Math. Lett. 17 (2004), 193-199. | DOI | MR | JFM

[11] Kirchhoff, G.: Vorlesungen über mathematische Physik. 1. Band: Mechanik. Teubner, Leipzig (1883), German.

[12] Komornik, V.: Exact Controllability and Stabilization: The Multiplier Method. Research in Applied Mathematics 36. Wiley, Chichester (1994). | MR | JFM

[13] Levine, H. A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+{\cal F}(u)$. Trans. Am. Math. Soc. 192 (1974), 1-21. | DOI | MR | JFM

[14] Levine, H. A.: Some additional remarks on the nonexistence of global solutions to nonlinear wave equations. SIAM J. Math. Anal. 5 (1974), 138-146. | DOI | MR | JFM

[15] Li, H.: Blow-up of solutions to a $p$-Kirchhoff-type parabolic equation with general nonlinearity. J. Dyn. Control Syst. 26 (2020), 383-392. | DOI | MR | JFM

[16] Li, J., Han, Y.: Global existence and finite time blow-up of solutions to a nonlocal $p$-Laplace equation. Math. Model. Anal. 24 (2019), 195-217. | DOI | MR | JFM

[17] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Gauthier-Villars, Paris (1969), French. | MR | JFM

[18] Messaoudi, S. A., Talahmeh, A. A.: Blowup in solutions of a quasilinear wave equation with variable-exponent nonlinearities. Math. Methods Appl. Sci. 40 (2017), 6976-6986. | DOI | MR | JFM

[19] Messaoudi, S. A., Talahmeh, A. A.: Blow up in a semilinear pseudo-parabolic equation with variable exponents. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 65 (2019), 311-326. | DOI | MR | JFM

[20] Messaoudi, S. A., Talahmeh, A. A., Al-Smail, J. H.: Nonlinear damped wave equation: Existence and blow-up. Comput. Math. Appl. 74 (2017), 3024-3041. | DOI | MR | JFM

[21] Ono, K.: Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings. J. Differ. Equations 137 (1997), 273-301. | DOI | MR | JFM

[22] Ouaoua, A., Maouni, M.: Blow-up, exponential growth of solution for a nonlinear parabolic equation with $p(x)$-Laplacian. Int. J. Anal. Appl. 17 (2019), 620-629. | DOI | JFM

[23] Polat, N.: Blow up of solution for a nonlinear reaction diffusion equation with multiple nonlinearities. Int. J. Sci. Technol. 2 (2007), 123-128. | MR

[24] Vitillaro, E.: Global nonexistence theorems for a class of evolution equations with dissipation. Arch. Ration. Mech. Anal. 149 (1999), 155-182. | DOI | MR | JFM

[25] Wu, S. T., Tsai, L.-Y.: Blow-up solutions for some non-linear wave equations of Kirchhoff type with some dissipation. Nonlinear Anal., Theory Methods Appl., Ser. A 65 (2006), 243-264. | DOI | MR | JFM

[26] Zheng, S.: Nonlinear Evolution Equations. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 133. Chapman & Hall/CRC, Boca Raton (2004). | DOI | MR | JFM

Cité par Sources :