Keywords: fractional $p$-Laplacian; impulsive effect; classical solution; variational method
@article{10_21136_MB_2021_0104_19,
author = {Graef, John R. and Heidarkhani, Shapour and Kong, Lingju and Moradi, Shahin},
title = {Existence results for impulsive fractional differential equations with $p${-Laplacian} via variational methods},
journal = {Mathematica Bohemica},
pages = {95--112},
year = {2022},
volume = {147},
number = {1},
doi = {10.21136/MB.2021.0104-19},
mrnumber = {4387470},
zbl = {07547243},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0104-19/}
}
TY - JOUR AU - Graef, John R. AU - Heidarkhani, Shapour AU - Kong, Lingju AU - Moradi, Shahin TI - Existence results for impulsive fractional differential equations with $p$-Laplacian via variational methods JO - Mathematica Bohemica PY - 2022 SP - 95 EP - 112 VL - 147 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0104-19/ DO - 10.21136/MB.2021.0104-19 LA - en ID - 10_21136_MB_2021_0104_19 ER -
%0 Journal Article %A Graef, John R. %A Heidarkhani, Shapour %A Kong, Lingju %A Moradi, Shahin %T Existence results for impulsive fractional differential equations with $p$-Laplacian via variational methods %J Mathematica Bohemica %D 2022 %P 95-112 %V 147 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0104-19/ %R 10.21136/MB.2021.0104-19 %G en %F 10_21136_MB_2021_0104_19
Graef, John R.; Heidarkhani, Shapour; Kong, Lingju; Moradi, Shahin. Existence results for impulsive fractional differential equations with $p$-Laplacian via variational methods. Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 95-112. doi: 10.21136/MB.2021.0104-19
[1] Afrouzi, G. A., Hadjian, A., Bisci, G. Molica: Some remarks for one-dimensional mean curvature problems through a local minimization principle. Adv. Nonlinear Anal. 2 (2013), 427-441. | DOI | MR | JFM
[2] Agarwal, R. P., Franco, D., O'Regan, D.: Singular boundary value problems for first and second order impulsive differential equations. Aequationes Math. 69 (2005), 83-96. | DOI | MR | JFM
[3] Agarwal, R. P., Hristova, S., O'Regan, D.: Non-Instantaneous Impulses in Differential Equations. Springer, Cham (2017). | DOI | MR | JFM
[4] Baek, H.: Extinction and permanence of a three-species Lotka-Volterra system with impulsive control strategies. Discrete Dyn. Nat. Soc. 2008 (2008), Article ID 752403, 18 pages. | DOI | MR | JFM
[5] Bai, C.: Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative. J. Math. Anal. Appl. 384 (2011), 211-231. | DOI | MR | JFM
[6] Bai, C.: Solvability of multi-point boundary value problem of nonlinear impulsive fractional differential equation at resonance. Electron. J. Qual. Theory Differ. Equ. 2011 (2011), Article ID 89, 19 pages. | DOI | MR | JFM
[7] Bhairat, S. P., Dhaigude, D.-B.: Existence of solutions of generalized fractional differential equation with nonlocal initial condition. Math. Bohem. 144 (2019), 203-220. | DOI | MR | JFM
[8] Bonanno, G., Candito, P.: Three solutions to a Neumann problem for elliptic equations involving the $p$-Laplacian. Arch. Math. 80 (2003), 424-429. | DOI | MR | JFM
[9] Bonanno, G., D'Aguì, G.: Multiplicity results for a perturbed elliptic Neumann problem. Abstr. Appl. Anal. 2010 (2010), Article ID 564363, 10 pages. | DOI | MR | JFM
[10] Bonanno, G., Bisci, G. Molica: Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Bound. Value Probl. 2009 (2009), Article ID 670675, 20 pages. | DOI | MR | JFM
[11] Bonanno, G., Rodríguez-López, R., Tersian, S.: Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17 (2014), 717-744. | DOI | MR | JFM
[12] Chen, L., Sun, J.: Nonlinear boundary value problem of first order impulsive functional differential equations. J. Math. Anal. Appl. 318 (2006), 726-741. | DOI | MR | JFM
[13] Chen, J., Tang, X. H.: Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory. Abstr. Appl. Anal. 2012 (2012), Article ID 648635, 21 pages. | DOI | MR | JFM
[14] Chu, J., Nieto, J. J.: Impulsive periodic solutions of first-order singular differential equations. Bull. Lond. Math. Soc. 40 (2008), 143-150. | DOI | MR | JFM
[15] Diethelm, K.: The Analysis of Fractional Differential Equation: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics 2004. Springer, Berlin (2010). | DOI | MR | JFM
[16] Faraci, F.: Multiple solutions for two nonlinear problems involving the $p$-Laplacian. Nonlinear Anal., Theory Methods Appl., Ser. A 63 (2005), e1017--e1029. | DOI | JFM
[17] Galewski, M., Bisci, G. Molica: Existence results for one-dimensional fractional equations. Math. Methods Appl. Sci. 39 (2016), 1480-1492. | DOI | MR | JFM
[18] Gao, D., Li, J.: Infinitely many solutions for impulsive fractional differential equations through variational methods. Quaest. Math. 43 (2020), 1285-1301. | DOI | MR | JFM
[19] Gao, Z., Yang, L., Liu, G.: Existence and uniqueness of solutions to impulsive fractional integro-differential equations with nonlocal conditions. Appl. Math., Irvine 4 (2013), 859-863. | DOI
[20] Graef, J. R., Kong, L., Kong, Q.: Multiple solutions of systems of fractional boundary value problems. Appl. Anal. 94 (2015), 1288-1304. | DOI | MR | JFM
[21] Guo, L., Zhang, X.: Existence of positive solutions for the singular fractional differential equations. J. Appl. Math. Comput. 44 (2014), 215-228. | DOI | MR | JFM
[22] Heidarkhani, S.: Multiple solutions for a nonlinear perturbed fractional boundary value problem. Dyn. Syst. Appl. 23 (2014), 317-331. | MR | JFM
[23] Heidarkhani, S., Afrouzi, G. A., Ferrara, M., Caristi, G., Moradi, S.: Existence results for impulsive damped vibration systems. Bull. Malays. Math. Sci. Soc. (2) 41 (2018), 1409-1428. | DOI | MR | JFM
[24] Heidarkhani, S., Afrouzi, G. A., Moradi, S., Caristi, G., Ge, B.: Existence of one weak solution for $p(x)$-biharmonic equations with Navier boundary conditions. Z. Angew. Math. Phys. 67 (2016), Article ID 73, 13 pages. | DOI | MR | JFM
[25] Heidarkhani, S., Zhao, Y., Caristi, G., Afrouzi, G. A., Moradi, S.: Infinitely many solutions for perturbed impulsive fractional differential systems. Appl. Anal. 96 (2017), 1401-1424. | DOI | MR | JFM
[26] (ed.), R. Hilfer: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000). | DOI | MR | JFM
[27] Jiao, F., Zhou, Y.: Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62 (2011), 1181-1199. | DOI | MR | JFM
[28] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). | DOI | MR | JFM
[29] Kong, L.: Existence of solutions to boundary value problems arising from the fractional advection dispersion equation. Electron. J. Differ. Equ. 2013 (2013), Article ID 106, 15 pages. | MR | JFM
[30] Li, W., Zhen, H.: The applications of sums of ranges of accretive operators to nonlinear equations involving the $p$-Laplacian operator. Nonlinear Anal., Theory Methods Appl. 24 (1995), 185-193. | DOI | MR | JFM
[31] Nieto, J. J., O'Regan, D.: Variational approach to impulsive differential equations. Nonlinear Anal., Real World Appl. 10 (2009), 680-690. | DOI | MR | JFM
[32] Nieto, J. J., Uzal, J. M.: Nonlinear second-order impulsive differential problems with dependence on the derivative via variational structure. J. Fixed Point Theory Appl. 22 (2020), Article ID 19, 13 pages. | DOI | MR | JFM
[33] Oldham, K. B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Mathematics in Science and Engineering 111. Academic Press, New York (1974). | DOI | MR | JFM
[34] Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. Regional Conference Series in Mathematics 65. American Mathematical Society, Providence (1986). | DOI | MR | JFM
[35] Ricceri, B.: A general variational principle and some of its applications. J. Comput. Appl. Math. 113 (2000), 401-410. | DOI | MR | JFM
[36] Tian, Y., Ge, W.: Applications of variational methods to boundary-value problem for impulsive differential equations. Proc. Edinb. Math. Soc., II. Ser. 51 (2008), 509-527. | DOI | MR | JFM
[37] Wang, G., Ahmad, B., Zhang, L., Nieto, J. J.: Comments on the concept of existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 401-403. | DOI | MR | JFM
[38] Wang, Y., Liu, Y., Cui, Y.: Infinitely many solutions for impulsive fractional boundary value problem with $p$-Laplacian. Bound. Value Probl. 2018 (2018), Article ID 94, 16 pages. | DOI | MR
[39] Wei, L., Agarwal, R. P.: Existence of solutions to nonlinear Neumann boundary value problems with generalized $p$-Laplacian operator. Comput. Math. Appl. 56 (2008), 530-541. | DOI | MR | JFM
[40] Zhao, Y., Tang, L.: Multiplicity results for impulsive fractional differential equations with $p$-Laplacian via variational methods. Bound. Value Probl. 2017 (2017), Article ID 123, 15 pages. | DOI | MR | JFM
[41] Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Hackensack (2014). | DOI | MR | JFM
Cité par Sources :