Positive solutions for concave-convex elliptic problems involving $p(x)$-Laplacian
Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 155-168
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the existence and nonexistence of positive solutions of the nonlinear equation $$ -\Delta _{p(x)} u = \lambda k(x) u^{q} \pm h(x) u^r\ \text {in}\ \Omega ,\quad u=0\ \text {on}\ \partial \Omega $$ where $\Omega \subset \mathbb {R}^N$, $N\geq 2$, is a regular bounded open domain in $\mathbb {R}^N$ and the $p(x)$-Laplacian $$ \Delta _{p(x)} u := \mbox {div}( |\nabla u|^{p(x)-2} \nabla u) $$ is introduced for a continuous function $p(x)>1$ defined on $\Omega $. The positive parameter $\lambda $ induces the bifurcation phenomena. The study of the equation (Q) needs generalized Lebesgue and Sobolev spaces. In this paper, under suitable assumptions, we show that some variational methods still work. We use them to prove the existence of positive solutions to the problem (Q) in $W_0^{1,p(x)}(\Omega )$. When we prove the existence of minimal solution, we use the sub-super solutions method.
We study the existence and nonexistence of positive solutions of the nonlinear equation $$ -\Delta _{p(x)} u = \lambda k(x) u^{q} \pm h(x) u^r\ \text {in}\ \Omega ,\quad u=0\ \text {on}\ \partial \Omega $$ where $\Omega \subset \mathbb {R}^N$, $N\geq 2$, is a regular bounded open domain in $\mathbb {R}^N$ and the $p(x)$-Laplacian $$ \Delta _{p(x)} u := \mbox {div}( |\nabla u|^{p(x)-2} \nabla u) $$ is introduced for a continuous function $p(x)>1$ defined on $\Omega $. The positive parameter $\lambda $ induces the bifurcation phenomena. The study of the equation (Q) needs generalized Lebesgue and Sobolev spaces. In this paper, under suitable assumptions, we show that some variational methods still work. We use them to prove the existence of positive solutions to the problem (Q) in $W_0^{1,p(x)}(\Omega )$. When we prove the existence of minimal solution, we use the sub-super solutions method.
DOI : 10.21136/MB.2021.0099-20
Classification : 35J20, 35J60, 35J62, 35J70, 35K57
Keywords: variable exponent Sobolev space; $p(x)$-Laplace operator; concave-convex nonlinearities; variational method
@article{10_21136_MB_2021_0099_20,
     author = {Dammak, Makkia and Amor Ben Ali, Abir and Taarabti, Said},
     title = {Positive solutions for concave-convex elliptic problems involving $p(x)${-Laplacian}},
     journal = {Mathematica Bohemica},
     pages = {155--168},
     year = {2022},
     volume = {147},
     number = {2},
     doi = {10.21136/MB.2021.0099-20},
     mrnumber = {4407349},
     zbl = {07547247},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0099-20/}
}
TY  - JOUR
AU  - Dammak, Makkia
AU  - Amor Ben Ali, Abir
AU  - Taarabti, Said
TI  - Positive solutions for concave-convex elliptic problems involving $p(x)$-Laplacian
JO  - Mathematica Bohemica
PY  - 2022
SP  - 155
EP  - 168
VL  - 147
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0099-20/
DO  - 10.21136/MB.2021.0099-20
LA  - en
ID  - 10_21136_MB_2021_0099_20
ER  - 
%0 Journal Article
%A Dammak, Makkia
%A Amor Ben Ali, Abir
%A Taarabti, Said
%T Positive solutions for concave-convex elliptic problems involving $p(x)$-Laplacian
%J Mathematica Bohemica
%D 2022
%P 155-168
%V 147
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0099-20/
%R 10.21136/MB.2021.0099-20
%G en
%F 10_21136_MB_2021_0099_20
Dammak, Makkia; Amor Ben Ali, Abir; Taarabti, Said. Positive solutions for concave-convex elliptic problems involving $p(x)$-Laplacian. Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 155-168. doi: 10.21136/MB.2021.0099-20

[1] Alves, C. O., Barreiro, J. L. P.: Existence and multiplicity of solutions for a $p(x)$-Laplacian equation with critical growth. J. Math. Anal. Appl. 403 (2013), 143-154. | DOI | MR | JFM

[2] Alves, C. O., Souto, M. A. S.: Existence of solutions for a class of problems in $ \Bbb{R}^N $ involving the $p(x)$-Laplacian. Contributions to Nonlinear Analysis Progress in Nonlinear Differential Equations and their Applications 66. Birkhäuser, Basel (2006), 17-32. | DOI | MR | JFM

[3] Ambrosetti, A., Brézis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122 (1994), 519-543. | DOI | MR | JFM

[4] Antontsev, S. N., Shmarev, S. I.: A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localisation properties of solutions. Nonlinear Anal., Theory Methods Appl., Ser. A 60 (2005), 515-545. | DOI | MR | JFM

[5] Chabrowski, J., Fu, Y.: Existence of solutions for $p(x)$-Laplacian problems on a bounded domain. J. Math. Anal. Appl. 306 (2005), 604-618. | DOI | MR | JFM

[6] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66 (2006), 1383-1406. | DOI | MR | JFM

[7] Silva, J. P. P. Da: On some multiple solutions for a $p(x)$-Laplacian equation with critical growth. J. Math. Anal. Appl. 436 (2016), 782-795. | DOI | MR | JFM

[8] Edmunds, D. E., Rákosník, J.: Density of smooth functions in $W^{k,p(x)}(\Omega)$. Proc. R. Soc. Lond., Ser. A 437 (1992), 229-236. | DOI | MR | JFM

[9] Edmunds, D. E., Rákosník, J.: Sobolev embedding with variable exponent. Stud. Math. 143 (2000), 267-293. | DOI | MR | JFM

[10] Fan, X.: On the sub-supersolution method for $p(x)$-Laplacian equations. J. Math. Anal. Appl. 330 (2007), 665-682. | DOI | MR | JFM

[11] Fan, X., Shen, J., Zhao, D.: Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$. J. Math. Anal. Appl. 262 (2001), 749-760. | DOI | MR | JFM

[12] Fan, X., Zhao, D.: On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$. J. Math. Anal. Appl. 263 (2001), 424-446. | DOI | MR | JFM

[13] Kefi, K.: $p(x)$-Laplacian with indefinite weight. Proc. Am. Math. Soc. 139 (2011), 4351-4360. | DOI | MR | JFM

[14] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. | DOI | MR | JFM

[15] Marcos, A., Abdou, A.: Existence of solutions for a nonhomogeneous Dirichlet problem involving $p(x)$-Laplacian operator and indefinite weight. Bound. Value Probl. 2019 (2019), Article ID 171, 21 pages. | DOI | MR

[16] Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3 (1931), 200-211 German. | DOI | JFM

[17] Rădulescu, V., Repovš, D.: Combined effects in nonlinear problems arising in the study of anisotropic continuous media. Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 1524-1530. | DOI | MR | JFM

[18] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics 1748. Springer, Berlin (2000). | DOI | MR | JFM

[19] Saoudi, K.: Existence and nonexistence of positive solutions for quasilinear elliptic problem. Abstr. Appl. Anal. 2012 (2012), Article ID 275748, 9 pages. | DOI | MR | JFM

[20] Saoudi, K.: Existence and multiplicity of solutions for a quasilinear equation involving the $p(x)$-Laplace operator. Complex Var. Elliptic Equ. 62 (2017), 318-332. | DOI | MR | JFM

[21] Silva, A.: Multiple solutions for the $p(x)$-Laplace operator with critical growth. Adv. Nonlinear Stud. 11 (2011), 63-75. | DOI | MR | JFM

[22] Takáč, P., Giacomoni, J.: A $p(x)$-Laplacian extension of the Díaz-Saa inequality and some applications. Proc. R. Soc. Edinb., Sect. A, Math. 150 (2020), 205-232. | DOI | MR | JFM

[23] Yücedağ, Z.: Solutions of nonlinear problems involving $p(x)$-Laplacian operator. Adv. Nonlinear Anal. 4 (2015), 285-293. | DOI | MR | JFM

[24] Zhikov, V. V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR, Izv. 29 (1987), 33-66 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50 1986 675-710. | DOI | MR | JFM

[25] Zhikov, V. V.: On passage to the limit in nonlinear variational problems. Russian Acad. Sci. Sb. Math. 76 (1993), 427-459 translation from Mat. Sb. 183 1992 47-84. | DOI | MR | JFM

Cité par Sources :