Keywords: variable exponent Sobolev space; $p(x)$-Laplace operator; concave-convex nonlinearities; variational method
@article{10_21136_MB_2021_0099_20,
author = {Dammak, Makkia and Amor Ben Ali, Abir and Taarabti, Said},
title = {Positive solutions for concave-convex elliptic problems involving $p(x)${-Laplacian}},
journal = {Mathematica Bohemica},
pages = {155--168},
year = {2022},
volume = {147},
number = {2},
doi = {10.21136/MB.2021.0099-20},
mrnumber = {4407349},
zbl = {07547247},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0099-20/}
}
TY - JOUR AU - Dammak, Makkia AU - Amor Ben Ali, Abir AU - Taarabti, Said TI - Positive solutions for concave-convex elliptic problems involving $p(x)$-Laplacian JO - Mathematica Bohemica PY - 2022 SP - 155 EP - 168 VL - 147 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0099-20/ DO - 10.21136/MB.2021.0099-20 LA - en ID - 10_21136_MB_2021_0099_20 ER -
%0 Journal Article %A Dammak, Makkia %A Amor Ben Ali, Abir %A Taarabti, Said %T Positive solutions for concave-convex elliptic problems involving $p(x)$-Laplacian %J Mathematica Bohemica %D 2022 %P 155-168 %V 147 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0099-20/ %R 10.21136/MB.2021.0099-20 %G en %F 10_21136_MB_2021_0099_20
Dammak, Makkia; Amor Ben Ali, Abir; Taarabti, Said. Positive solutions for concave-convex elliptic problems involving $p(x)$-Laplacian. Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 155-168. doi: 10.21136/MB.2021.0099-20
[1] Alves, C. O., Barreiro, J. L. P.: Existence and multiplicity of solutions for a $p(x)$-Laplacian equation with critical growth. J. Math. Anal. Appl. 403 (2013), 143-154. | DOI | MR | JFM
[2] Alves, C. O., Souto, M. A. S.: Existence of solutions for a class of problems in $ \Bbb{R}^N $ involving the $p(x)$-Laplacian. Contributions to Nonlinear Analysis Progress in Nonlinear Differential Equations and their Applications 66. Birkhäuser, Basel (2006), 17-32. | DOI | MR | JFM
[3] Ambrosetti, A., Brézis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122 (1994), 519-543. | DOI | MR | JFM
[4] Antontsev, S. N., Shmarev, S. I.: A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localisation properties of solutions. Nonlinear Anal., Theory Methods Appl., Ser. A 60 (2005), 515-545. | DOI | MR | JFM
[5] Chabrowski, J., Fu, Y.: Existence of solutions for $p(x)$-Laplacian problems on a bounded domain. J. Math. Anal. Appl. 306 (2005), 604-618. | DOI | MR | JFM
[6] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66 (2006), 1383-1406. | DOI | MR | JFM
[7] Silva, J. P. P. Da: On some multiple solutions for a $p(x)$-Laplacian equation with critical growth. J. Math. Anal. Appl. 436 (2016), 782-795. | DOI | MR | JFM
[8] Edmunds, D. E., Rákosník, J.: Density of smooth functions in $W^{k,p(x)}(\Omega)$. Proc. R. Soc. Lond., Ser. A 437 (1992), 229-236. | DOI | MR | JFM
[9] Edmunds, D. E., Rákosník, J.: Sobolev embedding with variable exponent. Stud. Math. 143 (2000), 267-293. | DOI | MR | JFM
[10] Fan, X.: On the sub-supersolution method for $p(x)$-Laplacian equations. J. Math. Anal. Appl. 330 (2007), 665-682. | DOI | MR | JFM
[11] Fan, X., Shen, J., Zhao, D.: Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$. J. Math. Anal. Appl. 262 (2001), 749-760. | DOI | MR | JFM
[12] Fan, X., Zhao, D.: On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$. J. Math. Anal. Appl. 263 (2001), 424-446. | DOI | MR | JFM
[13] Kefi, K.: $p(x)$-Laplacian with indefinite weight. Proc. Am. Math. Soc. 139 (2011), 4351-4360. | DOI | MR | JFM
[14] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. | DOI | MR | JFM
[15] Marcos, A., Abdou, A.: Existence of solutions for a nonhomogeneous Dirichlet problem involving $p(x)$-Laplacian operator and indefinite weight. Bound. Value Probl. 2019 (2019), Article ID 171, 21 pages. | DOI | MR
[16] Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3 (1931), 200-211 German. | DOI | JFM
[17] Rădulescu, V., Repovš, D.: Combined effects in nonlinear problems arising in the study of anisotropic continuous media. Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 1524-1530. | DOI | MR | JFM
[18] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics 1748. Springer, Berlin (2000). | DOI | MR | JFM
[19] Saoudi, K.: Existence and nonexistence of positive solutions for quasilinear elliptic problem. Abstr. Appl. Anal. 2012 (2012), Article ID 275748, 9 pages. | DOI | MR | JFM
[20] Saoudi, K.: Existence and multiplicity of solutions for a quasilinear equation involving the $p(x)$-Laplace operator. Complex Var. Elliptic Equ. 62 (2017), 318-332. | DOI | MR | JFM
[21] Silva, A.: Multiple solutions for the $p(x)$-Laplace operator with critical growth. Adv. Nonlinear Stud. 11 (2011), 63-75. | DOI | MR | JFM
[22] Takáč, P., Giacomoni, J.: A $p(x)$-Laplacian extension of the Díaz-Saa inequality and some applications. Proc. R. Soc. Edinb., Sect. A, Math. 150 (2020), 205-232. | DOI | MR | JFM
[23] Yücedağ, Z.: Solutions of nonlinear problems involving $p(x)$-Laplacian operator. Adv. Nonlinear Anal. 4 (2015), 285-293. | DOI | MR | JFM
[24] Zhikov, V. V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR, Izv. 29 (1987), 33-66 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50 1986 675-710. | DOI | MR | JFM
[25] Zhikov, V. V.: On passage to the limit in nonlinear variational problems. Russian Acad. Sci. Sb. Math. 76 (1993), 427-459 translation from Mat. Sb. 183 1992 47-84. | DOI | MR | JFM
Cité par Sources :