Positive solutions for concave-convex elliptic problems involving $p(x)$-Laplacian
Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 155-168
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study the existence and nonexistence of positive solutions of the nonlinear equation $$ -\Delta _{p(x)} u = \lambda k(x) u^{q} \pm h(x) u^r\ \text {in}\ \Omega ,\quad u=0\ \text {on}\ \partial \Omega $$ where $\Omega \subset \mathbb {R}^N$, $N\geq 2$, is a regular bounded open domain in $\mathbb {R}^N$ and the $p(x)$-Laplacian $$ \Delta _{p(x)} u := \mbox {div}( |\nabla u|^{p(x)-2} \nabla u) $$ is introduced for a continuous function $p(x)>1$ defined on $\Omega $. The positive parameter $\lambda $ induces the bifurcation phenomena. The study of the equation (Q) needs generalized Lebesgue and Sobolev spaces. In this paper, under suitable assumptions, we show that some variational methods still work. We use them to prove the existence of positive solutions to the problem (Q) in $W_0^{1,p(x)}(\Omega )$. When we prove the existence of minimal solution, we use the sub-super solutions method.
DOI :
10.21136/MB.2021.0099-20
Classification :
35J20, 35J60, 35J62, 35J70, 35K57
Keywords: variable exponent Sobolev space; $p(x)$-Laplace operator; concave-convex nonlinearities; variational method
Keywords: variable exponent Sobolev space; $p(x)$-Laplace operator; concave-convex nonlinearities; variational method
@article{10_21136_MB_2021_0099_20,
author = {Dammak, Makkia and Amor Ben Ali, Abir and Taarabti, Said},
title = {Positive solutions for concave-convex elliptic problems involving $p(x)${-Laplacian}},
journal = {Mathematica Bohemica},
pages = {155--168},
publisher = {mathdoc},
volume = {147},
number = {2},
year = {2022},
doi = {10.21136/MB.2021.0099-20},
mrnumber = {4407349},
zbl = {07547247},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0099-20/}
}
TY - JOUR AU - Dammak, Makkia AU - Amor Ben Ali, Abir AU - Taarabti, Said TI - Positive solutions for concave-convex elliptic problems involving $p(x)$-Laplacian JO - Mathematica Bohemica PY - 2022 SP - 155 EP - 168 VL - 147 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0099-20/ DO - 10.21136/MB.2021.0099-20 LA - en ID - 10_21136_MB_2021_0099_20 ER -
%0 Journal Article %A Dammak, Makkia %A Amor Ben Ali, Abir %A Taarabti, Said %T Positive solutions for concave-convex elliptic problems involving $p(x)$-Laplacian %J Mathematica Bohemica %D 2022 %P 155-168 %V 147 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0099-20/ %R 10.21136/MB.2021.0099-20 %G en %F 10_21136_MB_2021_0099_20
Dammak, Makkia; Amor Ben Ali, Abir; Taarabti, Said. Positive solutions for concave-convex elliptic problems involving $p(x)$-Laplacian. Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 155-168. doi: 10.21136/MB.2021.0099-20
Cité par Sources :