Keywords: higher order nonlinear dispersive equation; radius of spatial analyticity; approximate conservation law
@article{10_21136_MB_2021_0096_20,
author = {Boukarou, Aissa and Guerbati, Kaddour and Zennir, Khaled},
title = {On the radius of spatial analyticity for the higher order nonlinear dispersive equation},
journal = {Mathematica Bohemica},
pages = {19--32},
year = {2022},
volume = {147},
number = {1},
doi = {10.21136/MB.2021.0096-20},
mrnumber = {4387466},
zbl = {07547239},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0096-20/}
}
TY - JOUR AU - Boukarou, Aissa AU - Guerbati, Kaddour AU - Zennir, Khaled TI - On the radius of spatial analyticity for the higher order nonlinear dispersive equation JO - Mathematica Bohemica PY - 2022 SP - 19 EP - 32 VL - 147 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0096-20/ DO - 10.21136/MB.2021.0096-20 LA - en ID - 10_21136_MB_2021_0096_20 ER -
%0 Journal Article %A Boukarou, Aissa %A Guerbati, Kaddour %A Zennir, Khaled %T On the radius of spatial analyticity for the higher order nonlinear dispersive equation %J Mathematica Bohemica %D 2022 %P 19-32 %V 147 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0096-20/ %R 10.21136/MB.2021.0096-20 %G en %F 10_21136_MB_2021_0096_20
Boukarou, Aissa; Guerbati, Kaddour; Zennir, Khaled. On the radius of spatial analyticity for the higher order nonlinear dispersive equation. Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 19-32. doi: 10.21136/MB.2021.0096-20
[1] Bona, J. L., Grujić, Z., Kalisch, H.: Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 783-797. | DOI | MR | JFM
[2] Boukarou, A., Guerbati, K., Zennir, K., Alodhaibi, S., Alkhalaf, S.: Well-posedness and time regularity for a system of modified Korteweg-de Vries-type equations in analytic Gevrey spaces. Mathematics 8 (2020), Article ID 809, 16 pages. | DOI
[3] Boukarou, A., Zennir, K., Guerbati, K., Georgiev, S. G.: Well-posedness of the Cauchy problem of Ostrovsky equation in analytic Gevrey spaces and time regularity. Rend. Circ. Mat. Palermo (2) 70 (2021), 349-364. | DOI | MR | JFM
[4] Boukarou, A., Zennir, K., Guerbati, K., Svetlin, G. G.: Well-posedness and regularity of the fifth order Kadomtsev-Petviashvili I equation in the analytic Bourgain spaces. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66 (2020), 255-272. | DOI | MR
[5] Colliander, J. E., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Multilinear estimates for periodic KdV equations, and applications. J. Funct. Anal. 211 (2004), 173-218. | DOI | MR | JFM
[6] Grujić, Z., Kalisch, H.: Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions. Differ. Integral Equ. 15 (2002), 1325-1334. | MR | JFM
[7] Himonas, A. A., Kalisch, H., Selberg, S.: On persistence of spatial analyticity for the dispersion-generalized periodic KdV equation. Nonlinear Anal., Real World Appl. 38 (2017), 35-48. | DOI | MR | JFM
[8] Jones, K. L., He, X., Chen, Y.: Existence of periodic traveling wave solution to the forced generalized nearly concentric Korteweg-de Vries equation. Int. J. Math. Math. Sci. 24 (2000), 371-377. | DOI | MR | JFM
[9] Katznelson, Y.: An Introduction to Harmonic Analysis. Dover Books on Advanced Mathematics. Dover Publications, New York (1976). | DOI | MR | JFM
[10] Petronilho, G., Silva, P. L. da: On the radius of spatial analyticity for the modified Kawahara equation on the line. Math. Nachr. 292 (2019), 2032-2047. | DOI | MR | JFM
[11] Selberg, S., Silva, D. O. da: Lower bounds on the radius of a spatial analyticity for the KdV equation. Ann. Henri Poincaré 18 (2017), 1009-1023. | DOI | MR | JFM
[12] Selberg, S., Tesfahun, A.: On the radius of spatial analyticity for the 1d Dirac-KleinGordon equations. J. Differ. Equations 259 (2015), 4732-4744. | DOI | MR | JFM
[13] Selberg, S., Tesfahun, A.: On the radius of spatial analyticity for the quartic generalized KdV equation. Ann. Henri Poincaré 18 (2017), 3553-3564. | DOI | MR | JFM
[14] Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis. CBMS Regional Conference Series in Mathematics 106. AMS, Providence (2006). | DOI | MR | JFM
[15] Zhang, Z., Liu, Z., Sun, M., Li, S.: Low regularity for the higher order nonlinear dispersive equation in Sobolev spaces of negative index. J. Dyn. Differ. Equations 31 (2019), 419-433. | DOI | MR | JFM
Cité par Sources :