On the radius of spatial analyticity for the higher order nonlinear dispersive equation
Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 19-32
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this work, using bilinear estimates in Bourgain type spaces, we prove the local existence of a solution to a higher order nonlinear dispersive equation on the line for analytic initial data $u_{0}$. The analytic initial data can be extended as holomorphic functions in a strip around the $x$-axis. By Gevrey approximate conservation law, we prove the existence of the global solutions, which improve earlier results of Z. Zhang, Z. Liu, M. Sun, S. Li, (2019).
In this work, using bilinear estimates in Bourgain type spaces, we prove the local existence of a solution to a higher order nonlinear dispersive equation on the line for analytic initial data $u_{0}$. The analytic initial data can be extended as holomorphic functions in a strip around the $x$-axis. By Gevrey approximate conservation law, we prove the existence of the global solutions, which improve earlier results of Z. Zhang, Z. Liu, M. Sun, S. Li, (2019).
DOI : 10.21136/MB.2021.0096-20
Classification : 35B65, 35C07, 35E15, 35Q53
Keywords: higher order nonlinear dispersive equation; radius of spatial analyticity; approximate conservation law
@article{10_21136_MB_2021_0096_20,
     author = {Boukarou, Aissa and Guerbati, Kaddour and Zennir, Khaled},
     title = {On the radius of spatial analyticity for the higher order nonlinear dispersive equation},
     journal = {Mathematica Bohemica},
     pages = {19--32},
     year = {2022},
     volume = {147},
     number = {1},
     doi = {10.21136/MB.2021.0096-20},
     mrnumber = {4387466},
     zbl = {07547239},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0096-20/}
}
TY  - JOUR
AU  - Boukarou, Aissa
AU  - Guerbati, Kaddour
AU  - Zennir, Khaled
TI  - On the radius of spatial analyticity for the higher order nonlinear dispersive equation
JO  - Mathematica Bohemica
PY  - 2022
SP  - 19
EP  - 32
VL  - 147
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0096-20/
DO  - 10.21136/MB.2021.0096-20
LA  - en
ID  - 10_21136_MB_2021_0096_20
ER  - 
%0 Journal Article
%A Boukarou, Aissa
%A Guerbati, Kaddour
%A Zennir, Khaled
%T On the radius of spatial analyticity for the higher order nonlinear dispersive equation
%J Mathematica Bohemica
%D 2022
%P 19-32
%V 147
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0096-20/
%R 10.21136/MB.2021.0096-20
%G en
%F 10_21136_MB_2021_0096_20
Boukarou, Aissa; Guerbati, Kaddour; Zennir, Khaled. On the radius of spatial analyticity for the higher order nonlinear dispersive equation. Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 19-32. doi: 10.21136/MB.2021.0096-20

[1] Bona, J. L., Grujić, Z., Kalisch, H.: Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 783-797. | DOI | MR | JFM

[2] Boukarou, A., Guerbati, K., Zennir, K., Alodhaibi, S., Alkhalaf, S.: Well-posedness and time regularity for a system of modified Korteweg-de Vries-type equations in analytic Gevrey spaces. Mathematics 8 (2020), Article ID 809, 16 pages. | DOI

[3] Boukarou, A., Zennir, K., Guerbati, K., Georgiev, S. G.: Well-posedness of the Cauchy problem of Ostrovsky equation in analytic Gevrey spaces and time regularity. Rend. Circ. Mat. Palermo (2) 70 (2021), 349-364. | DOI | MR | JFM

[4] Boukarou, A., Zennir, K., Guerbati, K., Svetlin, G. G.: Well-posedness and regularity of the fifth order Kadomtsev-Petviashvili I equation in the analytic Bourgain spaces. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66 (2020), 255-272. | DOI | MR

[5] Colliander, J. E., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Multilinear estimates for periodic KdV equations, and applications. J. Funct. Anal. 211 (2004), 173-218. | DOI | MR | JFM

[6] Grujić, Z., Kalisch, H.: Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions. Differ. Integral Equ. 15 (2002), 1325-1334. | MR | JFM

[7] Himonas, A. A., Kalisch, H., Selberg, S.: On persistence of spatial analyticity for the dispersion-generalized periodic KdV equation. Nonlinear Anal., Real World Appl. 38 (2017), 35-48. | DOI | MR | JFM

[8] Jones, K. L., He, X., Chen, Y.: Existence of periodic traveling wave solution to the forced generalized nearly concentric Korteweg-de Vries equation. Int. J. Math. Math. Sci. 24 (2000), 371-377. | DOI | MR | JFM

[9] Katznelson, Y.: An Introduction to Harmonic Analysis. Dover Books on Advanced Mathematics. Dover Publications, New York (1976). | DOI | MR | JFM

[10] Petronilho, G., Silva, P. L. da: On the radius of spatial analyticity for the modified Kawahara equation on the line. Math. Nachr. 292 (2019), 2032-2047. | DOI | MR | JFM

[11] Selberg, S., Silva, D. O. da: Lower bounds on the radius of a spatial analyticity for the KdV equation. Ann. Henri Poincaré 18 (2017), 1009-1023. | DOI | MR | JFM

[12] Selberg, S., Tesfahun, A.: On the radius of spatial analyticity for the 1d Dirac-KleinGordon equations. J. Differ. Equations 259 (2015), 4732-4744. | DOI | MR | JFM

[13] Selberg, S., Tesfahun, A.: On the radius of spatial analyticity for the quartic generalized KdV equation. Ann. Henri Poincaré 18 (2017), 3553-3564. | DOI | MR | JFM

[14] Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis. CBMS Regional Conference Series in Mathematics 106. AMS, Providence (2006). | DOI | MR | JFM

[15] Zhang, Z., Liu, Z., Sun, M., Li, S.: Low regularity for the higher order nonlinear dispersive equation in Sobolev spaces of negative index. J. Dyn. Differ. Equations 31 (2019), 419-433. | DOI | MR | JFM

Cité par Sources :