Keywords: homogenization; parabolic problem; multiscale convergence; very weak multiscale convergence; two-scale convergence
@article{10_21136_MB_2021_0087_19,
author = {Danielsson, Tatiana and Johnsen, Pernilla},
title = {Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales},
journal = {Mathematica Bohemica},
pages = {483--511},
year = {2021},
volume = {146},
number = {4},
doi = {10.21136/MB.2021.0087-19},
mrnumber = {4336552},
zbl = {07442515},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0087-19/}
}
TY - JOUR AU - Danielsson, Tatiana AU - Johnsen, Pernilla TI - Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales JO - Mathematica Bohemica PY - 2021 SP - 483 EP - 511 VL - 146 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0087-19/ DO - 10.21136/MB.2021.0087-19 LA - en ID - 10_21136_MB_2021_0087_19 ER -
%0 Journal Article %A Danielsson, Tatiana %A Johnsen, Pernilla %T Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales %J Mathematica Bohemica %D 2021 %P 483-511 %V 146 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0087-19/ %R 10.21136/MB.2021.0087-19 %G en %F 10_21136_MB_2021_0087_19
Danielsson, Tatiana; Johnsen, Pernilla. Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales. Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 483-511. doi: 10.21136/MB.2021.0087-19
[1] Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenisation. Proc. R. Soc. Edinb., Sect. A 126 (1996), 297-342. | DOI | MR | JFM
[2] Allaire, G., Piatnitski, A.: Homogenization of nonlinear reaction-diffusion equation with a large reaction term. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 56 (2010), 141-161. | DOI | MR | JFM
[3] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and Its Applications 5. North-Holland Publishing, Amsterdam (1978). | DOI | MR | JFM
[4] Danielsson, T., Johnsen, P.: Homogenization of the heat equation with a vanishing volumetric heat capacity. Available at , 14 pages. | arXiv
[5] Danielsson, T., Johnsen, P.: Homogenization of the heat equation with a vanishing volumetric heat capacity. Progress in Industrial Mathematics at ECMI 2018 Mathematics in Industry 30. Springer, Cham (2019), 343-349. | DOI
[6] Douanla, H., Woukeng, J. L.: Homogenization of reaction-diffusion equations in fractured porous media. Electron. J. Differ. Equ. 2015 (2015), Article ID 253, 23 pages. | MR | JFM
[7] Flodén, L., Holmbom, A., Lindberg, M. Olsson: A strange term in the homogenization of parabolic equations with two spatial and two temporal scales. J. Funct. Spaces Appl. 2012 (2012), Article ID 643458, 9 pages. | DOI | MR | JFM
[8] Flodén, L., Holmbom, A., Olsson, M., Persson, J.: Very weak multiscale convergence. Appl. Math. Lett. 23 (2010), 1170-1173. | DOI | MR | JFM
[9] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.: A note on parabolic homogenization with a mismatch between the spatial scales. Abstr. Appl. Anal. 2013 (2013), Article ID 329704, 6 pages. | DOI | MR | JFM
[10] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.: Homogenization of parabolic equations with an arbitrary number of scales in both space and time. J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages. | DOI | MR | JFM
[11] Holmbom, A.: Homogenization of parabolic equations: An alternative approach and some corrector-type results. Appl. Math., Praha 42 (1997), 321-343. | DOI | MR | JFM
[12] Johnsen, P., Lobkova, T.: Homogenization of a linear parabolic problem with a certain type of matching between the microscopic scales. Appl. Math., Praha 63 (2018), 503-521. | DOI | MR | JFM
[13] Lobkova, T.: Homogenization of linear parabolic equations with a certain resonant matching between rapid spatial and temporal oscillations in periodically perforated domains. Acta Math. Appl. Sin., Engl. Ser. 35 (2019), 340-358. | DOI | MR | JFM
[14] Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002), 35-86. | MR | JFM
[15] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608-623. | DOI | MR | JFM
[16] Nguetseng, G.: Asymptotic analysis for a stiff variational problem arising in mechanics. SIAM J. Math. Anal. 21 (1990), 1394-1414. | DOI | MR | JFM
[17] Nguetseng, G., Woukeng, J. L.: $\Sigma$-convergence of nonlinear parabolic operators. Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 968-1004. | DOI | MR | JFM
[18] Persson, J.: Homogenization of monotone parabolic problems with several temporal scales. Appl. Math., Praha 57 (2012), 191-214. | DOI | MR | JFM
[19] Persson, J.: Selected Topics in Homogenization: Doctoral Thesis. Department of Engineering and Sustainable Development, Mid Sweden University, Sundsvall (2012).
[20] Svanstedt, N., Woukeng, J. L.: Periodic homogenization of strongly nonlinear reactiondiffusion equations with large reaction terms. Appl. Anal. 92 (2013), 1357-1378. | DOI | MR | JFM
[21] Zeidler, E.: Nonlinear Functional Analysis and Its Applications II/A: Linear Monotone Operators. Springer, New York (1990). | DOI | MR | JFM
Cité par Sources :