Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales
Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 483-511
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we establish compactness results of multiscale and very weak multiscale type for sequences bounded in $L^{2}(0,T;H_{0}^{1}(\Omega ))$, fulfilling a certain condition. We apply the results in the homogenization of the parabolic partial differential equation $\varepsilon ^{p}\partial _{t}u_{\varepsilon }(x,t) -\nabla \cdot ( a( x\varepsilon ^{-1} ,x\varepsilon ^{-2},t\varepsilon ^{-q},t\varepsilon ^{-r}) \nabla u_{\varepsilon }(x,t) ) = f(x,t) $, where $0
In this paper we establish compactness results of multiscale and very weak multiscale type for sequences bounded in $L^{2}(0,T;H_{0}^{1}(\Omega ))$, fulfilling a certain condition. We apply the results in the homogenization of the parabolic partial differential equation $\varepsilon ^{p}\partial _{t}u_{\varepsilon }(x,t) -\nabla \cdot ( a( x\varepsilon ^{-1} ,x\varepsilon ^{-2},t\varepsilon ^{-q},t\varepsilon ^{-r}) \nabla u_{\varepsilon }(x,t) ) = f(x,t) $, where $0$. The homogenization result reveals two special phenomena, namely that the homogenized problem is elliptic and that the matching for which the local problem is parabolic is shifted by $p$, compared to the standard matching that gives rise to local parabolic problems.
DOI : 10.21136/MB.2021.0087-19
Classification : 35B27, 35K20
Keywords: homogenization; parabolic problem; multiscale convergence; very weak multiscale convergence; two-scale convergence
@article{10_21136_MB_2021_0087_19,
     author = {Danielsson, Tatiana and Johnsen, Pernilla},
     title = {Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales},
     journal = {Mathematica Bohemica},
     pages = {483--511},
     year = {2021},
     volume = {146},
     number = {4},
     doi = {10.21136/MB.2021.0087-19},
     mrnumber = {4336552},
     zbl = {07442515},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0087-19/}
}
TY  - JOUR
AU  - Danielsson, Tatiana
AU  - Johnsen, Pernilla
TI  - Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales
JO  - Mathematica Bohemica
PY  - 2021
SP  - 483
EP  - 511
VL  - 146
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0087-19/
DO  - 10.21136/MB.2021.0087-19
LA  - en
ID  - 10_21136_MB_2021_0087_19
ER  - 
%0 Journal Article
%A Danielsson, Tatiana
%A Johnsen, Pernilla
%T Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales
%J Mathematica Bohemica
%D 2021
%P 483-511
%V 146
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0087-19/
%R 10.21136/MB.2021.0087-19
%G en
%F 10_21136_MB_2021_0087_19
Danielsson, Tatiana; Johnsen, Pernilla. Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales. Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 483-511. doi: 10.21136/MB.2021.0087-19

[1] Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenisation. Proc. R. Soc. Edinb., Sect. A 126 (1996), 297-342. | DOI | MR | JFM

[2] Allaire, G., Piatnitski, A.: Homogenization of nonlinear reaction-diffusion equation with a large reaction term. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 56 (2010), 141-161. | DOI | MR | JFM

[3] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and Its Applications 5. North-Holland Publishing, Amsterdam (1978). | DOI | MR | JFM

[4] Danielsson, T., Johnsen, P.: Homogenization of the heat equation with a vanishing volumetric heat capacity. Available at , 14 pages. | arXiv

[5] Danielsson, T., Johnsen, P.: Homogenization of the heat equation with a vanishing volumetric heat capacity. Progress in Industrial Mathematics at ECMI 2018 Mathematics in Industry 30. Springer, Cham (2019), 343-349. | DOI

[6] Douanla, H., Woukeng, J. L.: Homogenization of reaction-diffusion equations in fractured porous media. Electron. J. Differ. Equ. 2015 (2015), Article ID 253, 23 pages. | MR | JFM

[7] Flodén, L., Holmbom, A., Lindberg, M. Olsson: A strange term in the homogenization of parabolic equations with two spatial and two temporal scales. J. Funct. Spaces Appl. 2012 (2012), Article ID 643458, 9 pages. | DOI | MR | JFM

[8] Flodén, L., Holmbom, A., Olsson, M., Persson, J.: Very weak multiscale convergence. Appl. Math. Lett. 23 (2010), 1170-1173. | DOI | MR | JFM

[9] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.: A note on parabolic homogenization with a mismatch between the spatial scales. Abstr. Appl. Anal. 2013 (2013), Article ID 329704, 6 pages. | DOI | MR | JFM

[10] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.: Homogenization of parabolic equations with an arbitrary number of scales in both space and time. J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages. | DOI | MR | JFM

[11] Holmbom, A.: Homogenization of parabolic equations: An alternative approach and some corrector-type results. Appl. Math., Praha 42 (1997), 321-343. | DOI | MR | JFM

[12] Johnsen, P., Lobkova, T.: Homogenization of a linear parabolic problem with a certain type of matching between the microscopic scales. Appl. Math., Praha 63 (2018), 503-521. | DOI | MR | JFM

[13] Lobkova, T.: Homogenization of linear parabolic equations with a certain resonant matching between rapid spatial and temporal oscillations in periodically perforated domains. Acta Math. Appl. Sin., Engl. Ser. 35 (2019), 340-358. | DOI | MR | JFM

[14] Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002), 35-86. | MR | JFM

[15] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608-623. | DOI | MR | JFM

[16] Nguetseng, G.: Asymptotic analysis for a stiff variational problem arising in mechanics. SIAM J. Math. Anal. 21 (1990), 1394-1414. | DOI | MR | JFM

[17] Nguetseng, G., Woukeng, J. L.: $\Sigma$-convergence of nonlinear parabolic operators. Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 968-1004. | DOI | MR | JFM

[18] Persson, J.: Homogenization of monotone parabolic problems with several temporal scales. Appl. Math., Praha 57 (2012), 191-214. | DOI | MR | JFM

[19] Persson, J.: Selected Topics in Homogenization: Doctoral Thesis. Department of Engineering and Sustainable Development, Mid Sweden University, Sundsvall (2012).

[20] Svanstedt, N., Woukeng, J. L.: Periodic homogenization of strongly nonlinear reactiondiffusion equations with large reaction terms. Appl. Anal. 92 (2013), 1357-1378. | DOI | MR | JFM

[21] Zeidler, E.: Nonlinear Functional Analysis and Its Applications II/A: Linear Monotone Operators. Springer, New York (1990). | DOI | MR | JFM

Cité par Sources :