Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales
Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 483-511.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we establish compactness results of multiscale and very weak multiscale type for sequences bounded in $L^{2}(0,T;H_{0}^{1}(\Omega ))$, fulfilling a certain condition. We apply the results in the homogenization of the parabolic partial differential equation $\varepsilon ^{p}\partial _{t}u_{\varepsilon }(x,t) -\nabla \cdot ( a( x\varepsilon ^{-1} ,x\varepsilon ^{-2},t\varepsilon ^{-q},t\varepsilon ^{-r}) \nabla u_{\varepsilon }(x,t) ) = f(x,t) $, where $0$. The homogenization result reveals two special phenomena, namely that the homogenized problem is elliptic and that the matching for which the local problem is parabolic is shifted by $p$, compared to the standard matching that gives rise to local parabolic problems.
DOI : 10.21136/MB.2021.0087-19
Classification : 35B27, 35K20
Keywords: homogenization; parabolic problem; multiscale convergence; very weak multiscale convergence; two-scale convergence
@article{10_21136_MB_2021_0087_19,
     author = {Danielsson, Tatiana and Johnsen, Pernilla},
     title = {Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales},
     journal = {Mathematica Bohemica},
     pages = {483--511},
     publisher = {mathdoc},
     volume = {146},
     number = {4},
     year = {2021},
     doi = {10.21136/MB.2021.0087-19},
     mrnumber = {4336552},
     zbl = {07442515},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0087-19/}
}
TY  - JOUR
AU  - Danielsson, Tatiana
AU  - Johnsen, Pernilla
TI  - Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales
JO  - Mathematica Bohemica
PY  - 2021
SP  - 483
EP  - 511
VL  - 146
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0087-19/
DO  - 10.21136/MB.2021.0087-19
LA  - en
ID  - 10_21136_MB_2021_0087_19
ER  - 
%0 Journal Article
%A Danielsson, Tatiana
%A Johnsen, Pernilla
%T Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales
%J Mathematica Bohemica
%D 2021
%P 483-511
%V 146
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0087-19/
%R 10.21136/MB.2021.0087-19
%G en
%F 10_21136_MB_2021_0087_19
Danielsson, Tatiana; Johnsen, Pernilla. Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales. Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 483-511. doi : 10.21136/MB.2021.0087-19. http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0087-19/

Cité par Sources :