Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales
Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 483-511
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper we establish compactness results of multiscale and very weak multiscale type for sequences bounded in $L^{2}(0,T;H_{0}^{1}(\Omega ))$, fulfilling a certain condition. We apply the results in the homogenization of the parabolic partial differential equation $\varepsilon ^{p}\partial _{t}u_{\varepsilon }(x,t) -\nabla \cdot ( a( x\varepsilon ^{-1} ,x\varepsilon ^{-2},t\varepsilon ^{-q},t\varepsilon ^{-r}) \nabla u_{\varepsilon }(x,t) ) = f(x,t) $, where $0
In this paper we establish compactness results of multiscale and very weak multiscale type for sequences bounded in $L^{2}(0,T;H_{0}^{1}(\Omega ))$, fulfilling a certain condition. We apply the results in the homogenization of the parabolic partial differential equation $\varepsilon ^{p}\partial _{t}u_{\varepsilon }(x,t) -\nabla \cdot ( a( x\varepsilon ^{-1} ,x\varepsilon ^{-2},t\varepsilon ^{-q},t\varepsilon ^{-r}) \nabla u_{\varepsilon }(x,t) ) = f(x,t) $, where $0$. The homogenization result reveals two special phenomena, namely that the homogenized problem is elliptic and that the matching for which the local problem is parabolic is shifted by $p$, compared to the standard matching that gives rise to local parabolic problems.
DOI :
10.21136/MB.2021.0087-19
Classification :
35B27, 35K20
Keywords: homogenization; parabolic problem; multiscale convergence; very weak multiscale convergence; two-scale convergence
Keywords: homogenization; parabolic problem; multiscale convergence; very weak multiscale convergence; two-scale convergence
@article{10_21136_MB_2021_0087_19,
author = {Danielsson, Tatiana and Johnsen, Pernilla},
title = {Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales},
journal = {Mathematica Bohemica},
pages = {483--511},
year = {2021},
volume = {146},
number = {4},
doi = {10.21136/MB.2021.0087-19},
mrnumber = {4336552},
zbl = {07442515},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0087-19/}
}
TY - JOUR AU - Danielsson, Tatiana AU - Johnsen, Pernilla TI - Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales JO - Mathematica Bohemica PY - 2021 SP - 483 EP - 511 VL - 146 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0087-19/ DO - 10.21136/MB.2021.0087-19 LA - en ID - 10_21136_MB_2021_0087_19 ER -
%0 Journal Article %A Danielsson, Tatiana %A Johnsen, Pernilla %T Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales %J Mathematica Bohemica %D 2021 %P 483-511 %V 146 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0087-19/ %R 10.21136/MB.2021.0087-19 %G en %F 10_21136_MB_2021_0087_19
Danielsson, Tatiana; Johnsen, Pernilla. Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales. Mathematica Bohemica, Tome 146 (2021) no. 4, pp. 483-511. doi: 10.21136/MB.2021.0087-19
Cité par Sources :