Keywords: stability; boundedness; square integrability; Lyapunov functional; neutral differential equation of third order
@article{10_21136_MB_2021_0081_19,
author = {Graef, John R. and Beldjerd, Djamila and Remili, Moussadek},
title = {On stability, boundedness, and square integrability of solutions of certain third order neutral differential equations},
journal = {Mathematica Bohemica},
pages = {285--299},
year = {2022},
volume = {147},
number = {3},
doi = {10.21136/MB.2021.0081-19},
mrnumber = {4482306},
zbl = {07584125},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0081-19/}
}
TY - JOUR AU - Graef, John R. AU - Beldjerd, Djamila AU - Remili, Moussadek TI - On stability, boundedness, and square integrability of solutions of certain third order neutral differential equations JO - Mathematica Bohemica PY - 2022 SP - 285 EP - 299 VL - 147 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0081-19/ DO - 10.21136/MB.2021.0081-19 LA - en ID - 10_21136_MB_2021_0081_19 ER -
%0 Journal Article %A Graef, John R. %A Beldjerd, Djamila %A Remili, Moussadek %T On stability, boundedness, and square integrability of solutions of certain third order neutral differential equations %J Mathematica Bohemica %D 2022 %P 285-299 %V 147 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0081-19/ %R 10.21136/MB.2021.0081-19 %G en %F 10_21136_MB_2021_0081_19
Graef, John R.; Beldjerd, Djamila; Remili, Moussadek. On stability, boundedness, and square integrability of solutions of certain third order neutral differential equations. Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 285-299. doi: 10.21136/MB.2021.0081-19
[1] Ademola, A. T., Arawomo, P. O.: Uniform stability and boundedness of solutions of nonlinear delay differential equations of the third order. Math. J. Okayama Univ. 55 (2013), 157-166. | MR | JFM
[2] Baculíková, B., Džurina, J.: On the asymptotic behavior of a class of third order nonlinear neutral differential equations. Cent. Eur. J. Math. 8 (2010), 1091-1103. | DOI | MR | JFM
[3] Beldjerd, D., Remili, M.: Boundedness and square integrability of solutions of certain third-order differential equations. Math. Bohem. 143 (2018), 377-389. | DOI | MR | JFM
[4] Das, P., Misra, N.: A necessary and sufficient condition for the solutions of a functional differential equation to be oscillatory or tend to zero. J. Math. Anal. Appl. 205 (1997), 78-87. | DOI | MR | JFM
[5] Dorociaková, B.: Some nonoscillatory properties of third order differential equations of neutral type. Tatra Mt. Math. Publ. 38 (2007), 71-76. | MR | JFM
[6] Došlá, Z., Liška, P.: Comparison theorems for third-order neutral differential equations. Electron. J. Differ. Equ. 2016 (2016), Article ID 38, 13 pages. | MR | JFM
[7] Došlá, Z., Liška, P.: Oscillation of third-order nonlinear neutral differential equations. Appl. Math. Lett. 56 (2016), 42-48. | DOI | MR | JFM
[8] Ezeilo, J. O. C.: On the stability of solutions of certain differential equations of the third order. Q. J. Math., Oxf. II. Ser. 11 (1960), 64-69. | DOI | MR | JFM
[9] Goldwyn, R. M., Narendra, K. S.: Stability of Certain Nonlinear Differential Equations Using the Second Method of Liapunov. Technical Report No. 403. Harvard University, Cambridge (1963).
[10] Graef, J. R., Beldjerd, D., Remili, M.: On stability, ultimate boundedness, and existence of periodic solutions of certain third order differential equations with delay. Panam. Math. J. 25 (2015), 82-94. | MR | JFM
[11] Graef, J. R., Oudjedi, L. D., Remili, M.: Stability and square integrability of solutions to third order neutral delay differential equations. Tatra Mt. Math. Publ. 71 (2018), 81-97. | DOI | MR | JFM
[12] Hale, J. K.: Theory of Functional Differential Equations. Applied Mathematical Sciences 3. Springer, New York (1977). | DOI | MR | JFM
[13] Hale, J. K., Lunel, S. M. Verduyn: Introduction to Functional Differential Equations. Applied Mathematical Sciences 99. Springer, New York (1993). | DOI | MR | JFM
[14] Hara, T.: Remarks on the asymptotic behavior of the solutions of certain non-autonomous differential equations. Proc. Japan Acad. 48 (1972), 549-552. | DOI | MR | JFM
[15] Hara, T.: On the asymptotic behavior of the solutions of some third and fourth order non-autonomous differential equations. Publ. Res. Inst. Math. Sci., Kyoto Univ. 9 (1974), 649-673. | DOI | MR | JFM
[16] Kulenović, M. R. S., Ladas, G., Meimaridou, A.: Stability of solutions of linear delay differential equations. Proc. Am. Math. Soc. 100 (1987), 433-441. | DOI | MR | JFM
[17] Li, T., Zhang, C., Xing, G.: Oscillation of third-order neutral delay differential equations. Abstr. Appl. Anal. 2012 (2012), Article ID 569201, 11 pages. | DOI | MR | JFM
[18] Liapounoff, A. M.: Problème général de la stabilité du mouvement. Annals of Mathematics Studies 17. Princeton University Press, Princeton (1947), French. | DOI | MR | JFM
[19] Mihalíková, B., Kostiková, E.: Boundedness and oscillation of third order neutral differential equations. Tatra Mt. Math. Publ. 43 (2009), 137-144. | DOI | MR | JFM
[20] Nakashima, M.: Asymptotic behavior of the solutions of some third order differential equations. Rep. Fac. Sci., Kagoshima Univ. 4 (1971), 7-15. | MR
[21] Omeike, M. O.: New results on the asymptotic behavior of a third-order nonlinear differential equation. Differ. Equ. Appl. 2 (2010), 39-51. | DOI | MR | JFM
[22] Omeike, M. O.: New results on the stability of solution of some non-autonomous delay differential equations of the third order. Differ. Uravn. Protsessy Upr. 1 (2010), 18-29. | MR | JFM
[23] Qian, C.: On global stability of third-order nonlinear differential equations. Nonlinear Anal., Theory Methods Appl., Ser. A 42 (2000), 651-661. | DOI | MR | JFM
[24] Qian, C.: Asymptotic behavior of a third-order nonlinear differential equation. J. Math. Anal. Appl. 284 (2003), 191-205. | DOI | MR | JFM
[25] Remili, M., Beldjerd, D.: On the asymptotic behavior of the solutions of third order delay differential equations. Rend. Circ. Mat. Palermo (2) 63 (2014), 447-455. | DOI | MR | JFM
[26] Remili, M., Beldjerd, D.: A boundedness and stability results for a kind of third order delay differential equations. Appl. Appl. Math. 10 (2015), 772-782. | MR | JFM
[27] Remili, M., Beldjerd, D.: On ultimate boundedness and existence of periodic solutions of kind of third order delay differential equations. Acta Univ. M. Belii, Ser. Math. 24 (2016), 43-57. | MR | JFM
[28] Remili, M., Beldjerd, D.: Stability and ultimate boundedness of solutions of some third order differential equations with delay. J. Assoc. Arab Univers. Basic Appl. Sci. 23 (2017), 90-95. | DOI | MR
[29] Šimanov, S. N.: On stability of solution of a nonlinear equation of the third order. Prikl. Mat. Mekh. 17 (1953), 369-372 Russian. | MR | JFM
[30] Swick, K. E.: Asymptotic behavior of the solutions of certain third order differential equations. SIAM J. Appl. Math. 19 (1970), 96-102. | DOI | MR | JFM
[31] Tian, Y., Cai, Y., Fu, Y., Li, T.: Oscillation and asymptotic behavior of third-order neutral differential equations with distributed deviating arguments. Adv. Difference Equ. 2015 (2015), Article ID 267, 14 pages. | DOI | MR | JFM
[32] Tunç, C.: On the stability and boundedness of solutions of nonlinear third order differential equations with delay. Filomat 24 (2010), 1-10. | DOI | MR | JFM
[33] Tunç, C.: Some stability and boundedness conditions for non-autonomous differential equations with deviating arguments. Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Article ID 1, 12 pages. | DOI | MR | JFM
[34] Yu, J.: Asymptotic stability for a class of nonautonomous neutral differential equations. Chin. Ann. Math., Ser. B 18 (1997), 449-456. | MR | JFM
[35] Yu, J., Wang, Z., Qian, C.: Oscillation of neutral delay differential equation. Bull. Aust. Math. Soc. 45 (1992), 195-200. | DOI | MR | JFM
[36] Zhang, L., Si, L.: Global asymptotic stability of a class of third order nonlinear system. Acta Math. Appl. Sin. 30 (2007), 99-103 Chinese. | MR | JFM
Cité par Sources :