Keywords: contraction mapping principle; asymptotic stability; neutral differential equation\looseness 1
@article{10_21136_MB_2021_0079_20,
author = {Benhadri, Mimia and Caraballo, Tom\'as},
title = {New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations},
journal = {Mathematica Bohemica},
pages = {385--405},
year = {2022},
volume = {147},
number = {3},
doi = {10.21136/MB.2021.0079-20},
mrnumber = {4482313},
zbl = {07584132},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0079-20/}
}
TY - JOUR AU - Benhadri, Mimia AU - Caraballo, Tomás TI - New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations JO - Mathematica Bohemica PY - 2022 SP - 385 EP - 405 VL - 147 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0079-20/ DO - 10.21136/MB.2021.0079-20 LA - en ID - 10_21136_MB_2021_0079_20 ER -
%0 Journal Article %A Benhadri, Mimia %A Caraballo, Tomás %T New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations %J Mathematica Bohemica %D 2022 %P 385-405 %V 147 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0079-20/ %R 10.21136/MB.2021.0079-20 %G en %F 10_21136_MB_2021_0079_20
Benhadri, Mimia; Caraballo, Tomás. New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations. Mathematica Bohemica, Tome 147 (2022) no. 3, pp. 385-405. doi: 10.21136/MB.2021.0079-20
[1] Ardjouni, A., Djoudi, A.: Fixed points and stability in linear neutral differential equations with variable delays. Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 2062-2070. | DOI | MR | JFM
[2] Ardjouni, A., Djoudi, A.: Fixed points and stability in neutral nonlinear differential equations with variable delays. Opusc. Math. 32 (2012), 5-19. | DOI | MR | JFM
[3] Ardjouni, A., Djoudi, A.: Global asymptotic stability of nonlinear neutral differential equations with variable delays. Nonlinear Stud. 23 (2016), 157-166. | MR | JFM
[4] Ardjouni, A., Djoudi, A.: Global asymptotic stability of nonlinear neutral differential equations with infinite delay. Transylv. J. Math. Mech. 9 (2017), 125-133. | MR
[5] Brayton, R. K.: Bifurcation of periodic solutions in a nonlinear difference-differential equation of neutral type. Q. Appl. Math. 24 (1966), 215-224. | DOI | MR | JFM
[6] Burton, T. A.: Integral equations, implicit functions, and fixed points. Proc. Am. Math. Soc. 124 (1996), 2383-2390. | DOI | MR | JFM
[7] Burton, T. A.: Liapunov functionals, fixed points, and stability by Krasnoselskii's theorem. Nonlinear Stud. 9 (2002), 181-190. | MR | JFM
[8] Burton, T. A.: Stability by fixed point theory or Liapunov theory: A comparison. Fixed Point Theory 4 (2003), 15-32. | MR | JFM
[9] Burton, T. A.: Stability by Fixed Point Theory for Functional Differential Equations. Dover Publications, New York (2006). | MR | JFM
[10] Dib, Y. M., Maroun, M. R., Raffoul, Y. N.: Periodicity and stability in neutral nonlinear differential equations with functional delay. Electron. J. Differ. Equ. 2005 (2005), Article ID 142, 11 pages. | MR | JFM
[11] Djoudi, A., Khemis, R.: Fixed point techniques and stability for neutral differential equations with unbounded delays. Georgian Math. J. 13 (2006), 25-34. | DOI | MR | JFM
[12] Fan, M., Xia, Z., Zhu, H.: Asymptotic stability of delay differential equations via fixed point theory and applications. Can. Appl. Math. Q. 18 (2010), 361-380. | MR | JFM
[13] Guo, Y.: A generalization of Banach's contraction principle for some non-obviously contractive operators in a cone metric space. Turk. J. Math. 36 (2012), 297-304. | DOI | MR | JFM
[14] Guo, Y., Xu, C., Wu, J.: Stability analysis of neutral stochastic delay differential equations by a generalisation of Banach's contraction principle. Int. J. Control 90 (2017), 1555-1560. | DOI | MR | JFM
[15] Hale, J. K., Meyer, K. R.: A class of functional equations of neutral type. Mem. Am. Math. Soc. 76 (1967), 65 pages. | DOI | MR | JFM
[16] Hale, J. K., Lunel, S. M. Verduyn: Introduction to Functional Differential Equations. Applied Mathematical Sciences 99. Springer, New York (1993). | DOI | MR | JFM
[17] Jin, C., Luo, J.: Fixed points and stability in neutral differential equations with variable delays. Proc. Am. Math. Soc. 136 (2008), 909-918. | DOI | MR | JFM
[18] Kolmanovskii, V. B., Myshkis, A. D.: Applied Theory of Functional Differential Equations. Mathematics and Its Applications. Soviet Series 85. Kluwer Academic, Dordrecht (1992). | DOI | MR | JFM
[19] Kuang, Y.: Delay Differential Equations: With Applications in Population Dynamics. Mathematics in Science and Engineering 191. Academic Press, Boston (1993). | DOI | MR | JFM
[20] Lisena, B.: Global attractivity in nonautonomous logistic equations with delay. Nonlinear Anal., Real World Appl. 9 (2008), 53-63. | DOI | MR | JFM
[21] Liu, G., Yan, J.: Global asymptotic stability of nonlinear neutral differential equation. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 1035-1041. | DOI | MR | JFM
[22] Luo, J.: Fixed points and stability of neutral stochastic delay differential equations. J. Math. Anal. Appl. 334 (2007), 431-440. | DOI | MR | JFM
[23] Monje, A. A. Z. Mahdi, Ahmed, B. A. A.: Using Banach fixed point theorem to study the stability of first-order delay differential equations. Al-Nahrain J. Sci. 23 (2020), 69-72. | DOI
[24] Pinto, M., Sepúlveda, D.: $h$-asymptotic stability by fixed point in neutral nonlinear differential equations with delay. Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 3926-3933. | DOI | MR | JFM
[25] Raffoul, Y. N.: Stability in neutral nonlinear differential equations with functional delays using fixed-point theory. Math. Comput. Modelling 40 (2004), 691-700. | DOI | MR | JFM
[26] Seifert, G.: Liapunov-Razumikhin conditions for stability and boundedness of functional differential equations of Volterra type. J. Differ. Equations 14 (1973), 424-430. | DOI | MR | JFM
[27] Smart, D. R.: Fixed Points Theorems. Cambridge Tracts in Mathematics 66. Cambridge University Press, Cambridge (1980). | MR | JFM
[28] Tunç, C.: Stability and boundedness of solutions of non-autonomous differential equations of second order. J. Comput. Anal. Appl. 13 (2011), 1067-1074. | MR | JFM
[29] Tunç, C.: Asymptotic stability of solutions of a class of neutral differential equations with multiple deviating arguments. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 57 (2014), 121-130. | MR | JFM
[30] Tunç, C.: Convergence of solutions of nonlinear neutral differential equations with multiple delays. Bol. Soc. Mat. Mex., III. Ser. 21 (2015), 219-231. | DOI | MR | JFM
[31] Tunç, C., Sirma, A.: Stability analysis of a class of generalized neutral equations. J. Comput. Anal. Appl. 12 (2010), 754-759. | MR | JFM
[32] Tunç, C., Tunç, O.: On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order. J. Adv. Research 7 (2016), 165-168. | DOI
[33] Yazgan, R., Tunç, C., Atan, Ö.: On the global asymptotic stability of solutions to neutral equations of first order. Palest. J. Math. 6 (2017), 542-550. | MR | JFM
[34] Zhang, B.: Contraction mapping and stability in a delay-differential equation. Dynamic Systems and Applications. Volume 4 Dynamic Publishers, Atlanta (2004), 183-190. | MR | JFM
[35] Zhang, B.: Fixed points and stability in differential equations with variable delays. Nonlinear Anal., Theory Methods Appl., Ser. A 63 (2005), e233--e242. | DOI | JFM
Cité par Sources :