Sharp bounds of the third Hankel determinant for classes of univalent functions with bounded turning
Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 211-220

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We improve the bounds of the third order Hankel determinant for two classes of univalent functions with bounded turning.
DOI : 10.21136/MB.2021.0078-20
Classification : 30C45, 30C50
Keywords: analytic function; univalent function; Hankel determinant; upper bound; bounded turning
@article{10_21136_MB_2021_0078_20,
     author = {Obradovi\'c, Milutin and Tuneski, Nikola and Zaprawa, Pawe{\l}},
     title = {Sharp bounds of the third {Hankel} determinant for classes of univalent functions with bounded turning},
     journal = {Mathematica Bohemica},
     pages = {211--220},
     publisher = {mathdoc},
     volume = {147},
     number = {2},
     year = {2022},
     doi = {10.21136/MB.2021.0078-20},
     mrnumber = {4407353},
     zbl = {07547251},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0078-20/}
}
TY  - JOUR
AU  - Obradović, Milutin
AU  - Tuneski, Nikola
AU  - Zaprawa, Paweł
TI  - Sharp bounds of the third Hankel determinant for classes of univalent functions with bounded turning
JO  - Mathematica Bohemica
PY  - 2022
SP  - 211
EP  - 220
VL  - 147
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0078-20/
DO  - 10.21136/MB.2021.0078-20
LA  - en
ID  - 10_21136_MB_2021_0078_20
ER  - 
%0 Journal Article
%A Obradović, Milutin
%A Tuneski, Nikola
%A Zaprawa, Paweł
%T Sharp bounds of the third Hankel determinant for classes of univalent functions with bounded turning
%J Mathematica Bohemica
%D 2022
%P 211-220
%V 147
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0078-20/
%R 10.21136/MB.2021.0078-20
%G en
%F 10_21136_MB_2021_0078_20
Obradović, Milutin; Tuneski, Nikola; Zaprawa, Paweł. Sharp bounds of the third Hankel determinant for classes of univalent functions with bounded turning. Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 211-220. doi: 10.21136/MB.2021.0078-20

Cité par Sources :