Sharp bounds of the third Hankel determinant for classes of univalent functions with bounded turning
Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 211-220
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We improve the bounds of the third order Hankel determinant for two classes of univalent functions with bounded turning.
We improve the bounds of the third order Hankel determinant for two classes of univalent functions with bounded turning.
DOI : 10.21136/MB.2021.0078-20
Classification : 30C45, 30C50
Keywords: analytic function; univalent function; Hankel determinant; upper bound; bounded turning
@article{10_21136_MB_2021_0078_20,
     author = {Obradovi\'c, Milutin and Tuneski, Nikola and Zaprawa, Pawe{\l}},
     title = {Sharp bounds of the third {Hankel} determinant for classes of univalent functions with bounded turning},
     journal = {Mathematica Bohemica},
     pages = {211--220},
     year = {2022},
     volume = {147},
     number = {2},
     doi = {10.21136/MB.2021.0078-20},
     mrnumber = {4407353},
     zbl = {07547251},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0078-20/}
}
TY  - JOUR
AU  - Obradović, Milutin
AU  - Tuneski, Nikola
AU  - Zaprawa, Paweł
TI  - Sharp bounds of the third Hankel determinant for classes of univalent functions with bounded turning
JO  - Mathematica Bohemica
PY  - 2022
SP  - 211
EP  - 220
VL  - 147
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0078-20/
DO  - 10.21136/MB.2021.0078-20
LA  - en
ID  - 10_21136_MB_2021_0078_20
ER  - 
%0 Journal Article
%A Obradović, Milutin
%A Tuneski, Nikola
%A Zaprawa, Paweł
%T Sharp bounds of the third Hankel determinant for classes of univalent functions with bounded turning
%J Mathematica Bohemica
%D 2022
%P 211-220
%V 147
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0078-20/
%R 10.21136/MB.2021.0078-20
%G en
%F 10_21136_MB_2021_0078_20
Obradović, Milutin; Tuneski, Nikola; Zaprawa, Paweł. Sharp bounds of the third Hankel determinant for classes of univalent functions with bounded turning. Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 211-220. doi: 10.21136/MB.2021.0078-20

[1] Ali, R. M.: On a subclass of starlike functions. Rocky Mt. J. Math. 24 (1994), 447-451. | DOI | MR | JFM

[2] Bansal, D., Maharana, S., Prajapat, J. K.: Third order Hankel determinant for certain univalent functions. J. Korean Math. Soc. 52 (2015), 1139-1148. | DOI | MR | JFM

[3] Carlson, F.: Sur les coefficients d'une fonction bornée dans le cercle unité. Ark. Mat. Astron. Fys. A27 (1940), 8 pages French. | MR | JFM

[4] Dienes, P.: The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable. Dover Publications, New York (1957). | MR | JFM

[5] Grenander, U., Szegő, G.: Toeplitz Forms and Their Applications. California Monographs in Mathematical Sciences. University of California Press, Berkeley (1958). | MR | JFM

[6] Hayman, W. K.: On the second Hankel determinant of mean univalent functions. Proc. Lond. Math. Soc., III. Ser. 18 (1968), 77-94. | DOI | MR | JFM

[7] Janteng, A., Halim, S. A., Darus, M.: Coefficient inequality for a function whose derivative has a positive real part. JIPAM, J. Inequal. Pure Appl. Math. 7 (2006), Article ID 50, 5 pages. | MR | JFM

[8] Janteng, A., Halim, S. A., Darus, M.: Hankel determinant for starlike and convex functions. Int. J. Math. Anal., Ruse 1 (2007), 619-625. | MR | JFM

[9] Khatter, K., Ravichandran, V., Kumar, S. S.: Third Hankel determinant of starlike and convex functions. J. Anal. 28 (2020), 45-56. | DOI | MR | JFM

[10] Kowalczyk, B., Lecko, A., Sim, Y. J.: The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 97 (2018), 435-445. | DOI | MR | JFM

[11] Krzyz, J.: A counter example concerning univalent functions. Folia Soc. Sci. Lublin. Mat. Fiz. Chem. 2 (1962), 57-58.

[12] Obradović, M., Tuneski, N.: Hankel determinant of second order for some classes of analytic functions. Available at , 6 pages. | arXiv | MR

[13] Obradović, M., Tuneski, N.: New upper bounds of the third Hankel determinant for some classes of univalent functions. Available at , 10 pages. | arXiv | MR

[14] Thomas, D. K., Tuneski, N., Vasudevarao, A.: Univalent Functions: A Primer. De Gruyter Studies in Mathematics 69. De Gruyter, Berlin (2018). | DOI | MR | JFM

[15] Krishna, D. Vamshee, Venkateswarlu, B., RamReddy, T.: Third Hankel determinant for bounded turning functions of order alpha. J. Niger. Math. Soc. 34 (2015), 121-127. | DOI | MR | JFM

Cité par Sources :