Keywords: analytic function; univalent function; Hankel determinant; upper bound; bounded turning
@article{10_21136_MB_2021_0078_20,
author = {Obradovi\'c, Milutin and Tuneski, Nikola and Zaprawa, Pawe{\l}},
title = {Sharp bounds of the third {Hankel} determinant for classes of univalent functions with bounded turning},
journal = {Mathematica Bohemica},
pages = {211--220},
year = {2022},
volume = {147},
number = {2},
doi = {10.21136/MB.2021.0078-20},
mrnumber = {4407353},
zbl = {07547251},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0078-20/}
}
TY - JOUR AU - Obradović, Milutin AU - Tuneski, Nikola AU - Zaprawa, Paweł TI - Sharp bounds of the third Hankel determinant for classes of univalent functions with bounded turning JO - Mathematica Bohemica PY - 2022 SP - 211 EP - 220 VL - 147 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0078-20/ DO - 10.21136/MB.2021.0078-20 LA - en ID - 10_21136_MB_2021_0078_20 ER -
%0 Journal Article %A Obradović, Milutin %A Tuneski, Nikola %A Zaprawa, Paweł %T Sharp bounds of the third Hankel determinant for classes of univalent functions with bounded turning %J Mathematica Bohemica %D 2022 %P 211-220 %V 147 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0078-20/ %R 10.21136/MB.2021.0078-20 %G en %F 10_21136_MB_2021_0078_20
Obradović, Milutin; Tuneski, Nikola; Zaprawa, Paweł. Sharp bounds of the third Hankel determinant for classes of univalent functions with bounded turning. Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 211-220. doi: 10.21136/MB.2021.0078-20
[1] Ali, R. M.: On a subclass of starlike functions. Rocky Mt. J. Math. 24 (1994), 447-451. | DOI | MR | JFM
[2] Bansal, D., Maharana, S., Prajapat, J. K.: Third order Hankel determinant for certain univalent functions. J. Korean Math. Soc. 52 (2015), 1139-1148. | DOI | MR | JFM
[3] Carlson, F.: Sur les coefficients d'une fonction bornée dans le cercle unité. Ark. Mat. Astron. Fys. A27 (1940), 8 pages French. | MR | JFM
[4] Dienes, P.: The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable. Dover Publications, New York (1957). | MR | JFM
[5] Grenander, U., Szegő, G.: Toeplitz Forms and Their Applications. California Monographs in Mathematical Sciences. University of California Press, Berkeley (1958). | MR | JFM
[6] Hayman, W. K.: On the second Hankel determinant of mean univalent functions. Proc. Lond. Math. Soc., III. Ser. 18 (1968), 77-94. | DOI | MR | JFM
[7] Janteng, A., Halim, S. A., Darus, M.: Coefficient inequality for a function whose derivative has a positive real part. JIPAM, J. Inequal. Pure Appl. Math. 7 (2006), Article ID 50, 5 pages. | MR | JFM
[8] Janteng, A., Halim, S. A., Darus, M.: Hankel determinant for starlike and convex functions. Int. J. Math. Anal., Ruse 1 (2007), 619-625. | MR | JFM
[9] Khatter, K., Ravichandran, V., Kumar, S. S.: Third Hankel determinant of starlike and convex functions. J. Anal. 28 (2020), 45-56. | DOI | MR | JFM
[10] Kowalczyk, B., Lecko, A., Sim, Y. J.: The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 97 (2018), 435-445. | DOI | MR | JFM
[11] Krzyz, J.: A counter example concerning univalent functions. Folia Soc. Sci. Lublin. Mat. Fiz. Chem. 2 (1962), 57-58.
[12] Obradović, M., Tuneski, N.: Hankel determinant of second order for some classes of analytic functions. Available at , 6 pages. | arXiv | MR
[13] Obradović, M., Tuneski, N.: New upper bounds of the third Hankel determinant for some classes of univalent functions. Available at , 10 pages. | arXiv | MR
[14] Thomas, D. K., Tuneski, N., Vasudevarao, A.: Univalent Functions: A Primer. De Gruyter Studies in Mathematics 69. De Gruyter, Berlin (2018). | DOI | MR | JFM
[15] Krishna, D. Vamshee, Venkateswarlu, B., RamReddy, T.: Third Hankel determinant for bounded turning functions of order alpha. J. Niger. Math. Soc. 34 (2015), 121-127. | DOI | MR | JFM
Cité par Sources :