Weakly fuzzy topological entropy
Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 221-236.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In 2005, İ. Tok fuzzified the notion of the topological entropy R. A. Adler et al. (1965) using the notion of fuzzy compactness of C. L. Chang (1968). In the present paper, we have proposed a new definition of the fuzzy topological entropy of fuzzy continuous mapping, namely weakly fuzzy topological entropy based on the notion of weak fuzzy compactness due to R. Lowen (1976) along with its several properties. We have shown that the topological entropy R. A. Adler et al. (1965) of continuous mapping $\psi \colon (X,\tau )\rightarrow (X,\tau )$, where $(X,\tau )$ is compact, is equal to the weakly fuzzy topological entropy of $\psi \colon (X,\omega (\tau ))\rightarrow (X,\omega (\tau ))$. We have also established an example that shows that the fuzzy topological entropy of İ. Tok (2005) cannot give such a bridge result to the topological entropy of Adler et al. (1965). Moreover, our definition of the weakly fuzzy topological entropy can be applied to find the topological entropy (namely weakly fuzzy topological entropy $h_w(\psi )$) of the mapping $\psi \colon X\rightarrow X$ (where $X$ is either compact or weakly fuzzy compact), whereas the topological entropy $h_a(\psi )$ of Adler does not exist for the mapping $\psi \colon X\rightarrow X$ (where $X$ is non-compact weakly fuzzy compact). Finally, a product theorem for the weakly fuzzy topological entropy has been established.
DOI : 10.21136/MB.2021.0073-20
Classification : 37B40, 37B99, 54A40, 54C70
Keywords: weakly fuzzy compact; weakly fuzzy compact topological dynamical system; weakly fuzzy topological entropy
@article{10_21136_MB_2021_0073_20,
     author = {Afsan, B M Uzzal},
     title = {Weakly fuzzy topological entropy},
     journal = {Mathematica Bohemica},
     pages = {221--236},
     publisher = {mathdoc},
     volume = {147},
     number = {2},
     year = {2022},
     doi = {10.21136/MB.2021.0073-20},
     mrnumber = {4407354},
     zbl = {07547252},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0073-20/}
}
TY  - JOUR
AU  - Afsan, B M Uzzal
TI  - Weakly fuzzy topological entropy
JO  - Mathematica Bohemica
PY  - 2022
SP  - 221
EP  - 236
VL  - 147
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0073-20/
DO  - 10.21136/MB.2021.0073-20
LA  - en
ID  - 10_21136_MB_2021_0073_20
ER  - 
%0 Journal Article
%A Afsan, B M Uzzal
%T Weakly fuzzy topological entropy
%J Mathematica Bohemica
%D 2022
%P 221-236
%V 147
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0073-20/
%R 10.21136/MB.2021.0073-20
%G en
%F 10_21136_MB_2021_0073_20
Afsan, B M Uzzal. Weakly fuzzy topological entropy. Mathematica Bohemica, Tome 147 (2022) no. 2, pp. 221-236. doi : 10.21136/MB.2021.0073-20. http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0073-20/

Cité par Sources :