Sofic groups are not locally embeddable into finite Moufang loops
Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 11-18
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We shall show that there exist sofic groups which are not locally embeddable into finite Moufang loops. These groups serve as counterexamples to a problem and two conjectures formulated in the paper by M. Vodička, P. Zlatoš (2019).
We shall show that there exist sofic groups which are not locally embeddable into finite Moufang loops. These groups serve as counterexamples to a problem and two conjectures formulated in the paper by M. Vodička, P. Zlatoš (2019).
DOI : 10.21136/MB.2021.0065-20
Classification : 05B15, 05C25, 20E25, 20N05
Keywords: group; diassociative IP loop; Moufang loop; finite embeddability property; local embeddability
@article{10_21136_MB_2021_0065_20,
     author = {Ghumashyan, Heghine and Guri\v{c}an, Jaroslav},
     title = {Sofic groups are not locally embeddable into finite {Moufang} loops},
     journal = {Mathematica Bohemica},
     pages = {11--18},
     year = {2022},
     volume = {147},
     number = {1},
     doi = {10.21136/MB.2021.0065-20},
     mrnumber = {4387465},
     zbl = {07547238},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0065-20/}
}
TY  - JOUR
AU  - Ghumashyan, Heghine
AU  - Guričan, Jaroslav
TI  - Sofic groups are not locally embeddable into finite Moufang loops
JO  - Mathematica Bohemica
PY  - 2022
SP  - 11
EP  - 18
VL  - 147
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0065-20/
DO  - 10.21136/MB.2021.0065-20
LA  - en
ID  - 10_21136_MB_2021_0065_20
ER  - 
%0 Journal Article
%A Ghumashyan, Heghine
%A Guričan, Jaroslav
%T Sofic groups are not locally embeddable into finite Moufang loops
%J Mathematica Bohemica
%D 2022
%P 11-18
%V 147
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2021.0065-20/
%R 10.21136/MB.2021.0065-20
%G en
%F 10_21136_MB_2021_0065_20
Ghumashyan, Heghine; Guričan, Jaroslav. Sofic groups are not locally embeddable into finite Moufang loops. Mathematica Bohemica, Tome 147 (2022) no. 1, pp. 11-18. doi: 10.21136/MB.2021.0065-20

[1] Baumslag, G., Solitar, D.: Some two-generator one-relator non-Hopfian groups. Bull. Am. Math. Soc. 68 (1962), 199-201. | DOI | MR | JFM

[2] Ceccherini-Silberstein, T., Coornaert, M.: Cellular Automata and Groups. Springer Monographs in Mathematics. Springer, Berlin (2010). | DOI | MR | JFM

[3] Collins, B., Dykema, K. J.: Free products of sofic groups with amalgamation over monotileably amenable groups. Münster J. Math. 4 (2011), 101-118. | MR | JFM

[4] Drápal, A.: A simplified proof of Moufang's theorem. Proc. Am. Math. Soc. 139 (2011), 93-98. | DOI | MR | JFM

[5] Glebsky, L. Y., Gordon, Y. I.: On approximation of amenable groups by finite quasigroups. J. Math. Sci. 140 (2007), 369-375. | DOI | MR | JFM

[6] Henkin, L.: Two concepts from the theory of models. J. Symb. Log. 21 (1956), 28-32. | DOI | MR | JFM

[7] Higman, G., Neumann, B. H., Neumann, H.: Embedding theorems for groups. J. Lond. Math. Soc. 24 (1949), 247-254. | DOI | MR | JFM

[8] Lyndon, R. C., Schupp, P. E.: Combinatorial Group Theory. Classics in Mathematics. Springer, Berlin (2001). | DOI | MR | JFM

[9] Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations. Dover Books on Mathematics. Dover Publications, Mineola (2004). | MR | JFM

[10] Mal'tsev, A. I.: On a general method for obtaining local theorems in group theory. Ivanov. Gos. Ped. Inst. Uč. Zap. Fiz.-Mat. Fak. 1 (1941), 3-9 Russian. | MR

[11] Mal'tsev, A. I.: On homomorphisms onto finite groups. Twelve Papers in Algebra American Mathematical Society Translations: Series 2, 119. American Mathematical Society (1983), 67-79. | DOI | JFM

[12] Meskin, S.: Nonresidually finite one-relator groups. Trans. Am. Math. Soc. 164 (1972), 105-114. | DOI | MR | JFM

[13] Pflugfelder, H. O.: Quasigroups and Loops: Introduction. Sigma Series in Pure Mathematics 7. Heldermann Verlag, Berlin (1990). | MR | JFM

[14] Vershik, A. M., Gordon, E. I.: Groups that are locally embeddable in the class of finite groups. St. Petersbg. Math. J. 9 (1998), 49-67. | MR | JFM

[15] Vodička, M., Zlatoš, P.: The finite embeddability property for IP loops and local embeddability of groups into finite IP loops. Ars Math. Contemp. 17 (2019), 535-554. | DOI | MR | JFM

[16] Weiss, B.: Monotileable amenable groups. Topology, Ergodic Theory, Real Algebraic Geometry: Rokhlin's Memorial American Mathematical Society Translations: Series 2, 202. American Mathematical Society (2001), 257-262. | DOI | MR | JFM

[17] Ziman, M.: Extensions of Latin subsquares and local embeddability of groups and group algebras. Quasigroups Relat. Syst. 11 (2004), 115-125. | MR | JFM

Cité par Sources :